
 

 Temitope Emokpae                                                                                                 2/13/2023 

CSC 344 

 
 

 
 

First Problem Set Assignment: BNF 

 

Learning Abstract 

This assignment features defining BNF and its functions. It also demonstrates making a 
parse tree using the BNF created. 

 
 

Problem 1: Laughter 
 

 

BNF Description 
 

 

<L> ::= HA < L > | HEE <L> | <empty> 
 

Parse Tree for Laughter (1) 
 

    

 



 

 

  Parse Tree for Laughter (2) 
 

 

 

 
 

Problem 2: SQN (Special Quaternary Numbers) 
 

 

BNF Description 
 

 

<SQN> ::= <empty> | <D> | 0 <D0> | 1 <D1> | 2 <D2> | 3 <D3> 

<D> ::= 0 | 1 | 2 | 3 

  <D0> ::= 1 <D1> | 2 <D2 > | 3 <D3> | <empty> 

<D1> ::= 0 <D0> | 2 <D2> | 3 <D3> | <empty> 

<D2> ::= 0 <D0> | 1 <D1> | 3 <D3> | <empty> 

<D3> ::= 0 <D0> | 1 <D1> | 2 <D2> | <empty> 

 

Parse Tree for SQN (1) 

 

 



 

 
 

Parse Tree for SQN (2) 
 

 

 
 

Parse Tree for SQN (3) 
 

 

The string “1223” cannot be drawn because the production rule for <D2> won’t allow another 2 to come 

after. 

 

Problem 3: BXR 
 

 

BNF Description 
 

 



 

< BXR> ::= ( and <BXR> ) | ( or <BXR> )  | ( not #f ) <BXR>  | ( not #t ) <BXR> | <value> <BXR> | 

<empty> 

<value> ::= #t <value> | #f <value> | <empty> 
 

Parse Tree for BXR (1) 
 

 

 
 

 

 

 

 

Parse Tree for BXR (2) 



 

 

 

 

 

 

Problem 4: LSS (Line Segment Sequences) 

 

  BNF Description 
 

 

<LSS> ::= ( <Distance> <Angle> <Color>) <LSS> | <empty> 

<Color> ::= RED | BLACK | BLUE 
 

Parse Tree for LSS (1) 
 

 

 
 

Parse Tree for LSS (2) 
 

 

 

 

 
 

 

 

 

 

Problem 5: M-Lines 

 

  BNF Description 
 

 

<M> ::= PLAY <M> | REST <M> | RP <M> | LP <M> | S2 <M> | X2 <M> | <empty> 
 

Parse Tree for M-Lines (1) 
 

 



 

 
 

Parse Tree for M-Lines (2) 
 

 

 
 
 

Problem 6: BNF? 
 

 

BNF Definition 
 

 

BNF, short for Backus–Naur Form, was created by a program designer named John Bakus. It's 

the formal technique used in computer science for structuring and describing the grammar syntax 

of any programming language. It contains sets of terminal symbols, nonterminal symbols, 

tokens, and the production rule. The production rule gets used to represent the left-hand 

nonterminal side being replaced by what is on the right-hand terminal or nonterminal side. After 

that, a parse tree gets constructed that breaks down the long expression into tiny parts based on 

the BNF made for it. 


