Fourth Racket Programming Assignment Specification

Learning Abstract

This Racket programming assignment I got familiar with the mabp, filter, and foldr functions. I also learned to used
recursion to do a variety of exercises. This assignment is a good way to understand when to use which of the many

recourses provided since there are many methods that work but some are often simpler and easier to read.

Task 1 - Generate Uniform List

Specification

Define a recursive function called generate-uniform-list according to the following specification:
1. The first parameter is presumed to be a nonnegative integer.
2. The second parameter is presumed to be a Lisp object.

3. The value of the function will be a list of length equal to the value of the first parameter containing just that many
instances of the value of the second parameter.

Demo

$lang racket
(require racket/trace)
(require 2htdp/image)

(generate-uniform-list length obij)

((= length
(list)

> length 0)
define myList (append (list obj) (generate-uniform-list (- length 1) ob3j)))
myList

L LT L e e L IR M T S TEE TR P E T Ie

= generate-uniform-list 5 'kitty

'(kitty kitty kitty kitty Pltty}

> generate-uniform-1list 1 2

(2 2 22 22 22 2 2)

> generate-uniform-1list 'whatever

')

> generate-uniform-1list 2 ' (racket pr og haskell rust)
'{({racket prolog haskell rust) (racket [_l_-].}g haskell rust))
>

Task 2 - Association List Generator

Specification

Define a recursive function called a-list according to the following specification:

1. The first parameter is presumed to be a list of objects.
2. The second parameter is presumed to be a list of objects of the same length as the value of the first parameter. 3.

The value of the function will be a list of pairs obtained by “consing” successive elements of the two lists.

Demo

length objList)

{cons

(cons (list-ref objList) (list-ref objListPair
(a-list (cdr objList) cdr objListPair))

(= (length objList)

—— g m e e

gy ey e s _
> a-list '"(one two three four five) '(un deux trols guatre cing)
"{{one . un) (two . deux) (three . trois) (four . gquatre) (five . cing))
> a-list ())

')

> a-list "(this) ° that

'{{this . that))

> a-list " (one two three) { (1) 2 2

'"{({one 1) (two 2 2) (three 3 3 3))

>

Task 3 - Assoc

Specification

Define a recursive function called assoc according to the following specification:

1. The first parameter is presumed to be a lisp object.
2. The third parameter is presumed to be an association list.

3. The value of the function will be the first pair in the given association list for which the car of the pair equals the
value of the first parameter, or ‘() if there is no such element.

Demo

= (leng assocList
list
eq b car (list-ref assocLis
list-ref assocLis
elzse
(asso b cdr as cList)
efine all
a-list " (one two three four) "(un deux trois guatre
efine al2
a-list ne W \ree
> assoc "two all
'{tw deux)
> ({ assoc '"five all
')
> assoc "thre 12
'{three 3 3 3)
> (assoc 'four al2
')
> |
Task 4 - Rassoc
Specification

Define a recursive function called rassoc according to the following specification:
1. The first parameter is presumed to be a lisp object.
2. The third parameter is presumed to be an association list.

3. The value of the function will be the first pair in the given association list for which the cdr of the pair equals the
value of the first parameter, or ‘() if there is no such element.

Demo

(define (rassoc obj assocList)

‘cond
((= (length assocList) 0)
(lisft)
)

((eg? obj (cdr (list-ref assocList 0)))
(list-ref assocList 0)

)
(else
(rassoc obj (cdr assocList))
)
)
)
> r = three 11
")
> rassoc 'trois all
' (three trois)
> rassoc '(1l) al2
()
> rassoc alz
()
> rassoc al2

Task 5 - Los->s

Specification

Define a recursive function called los->s according to the following specification:
1. The first and only parameter is presumed to be a list of character strings.

2. The value of the function will a string containing the strings found in the value of the parameter separated by
spaces.

Demo

(los->s (cdr stringList)))

(los->s (cdr stringList)))

Welcome to DrRacket, version 8.2 [cs].
Language: racket, with debugging; memory limit: 128 MB.

> los—->s5s I yellow k

"red yellow blue purple™

> los->s (| generate-uniform-list

B & o e = o om om o om an o= o an =an o =n am == am "
") 1 —

mn

> los->s '"("whats

"whatever"

Task 6 - Generate list

Specification

Define a recursive function called generate-list according to the following specification:
1. The first parameter is a nonnegative integer.

2. The second parameter is a parameterless function that returns a lisp object.

3. The function returns a list of length equal to the value of the first parameter containing objects created by calls to
the function represented by the second parameter.

Some auxiliary code to support the demo

(define (roll-die) (+ (random6)1))

(define (dot)
(circle (+10(random 41)) "solid" (random-color))

(define (random-color)
(color (rgb-value) (rgb-value) (rgb-value))

(define (rgh-value)
(random 256)

(define (sort-dots loc)
(sort loc #:key image-width <)

Demo 1

define (generate-list length objFunc)

(cons objFunc) (generate-list (- length 1) objFunc))

+ T om
(random 41) "so0lid"™ (random-color
define big-dot)
circle + 4 random) "solid"™ random-color
(define (random-color)
(color (rgb-wvalue) (rgb-value) (rgb-wvalue))
define (rgb-wvalue
random
define (sort-dots loc

(sort loc #:key image-width <

> ggnerate-list 10 roll-die)

22 5.3k 2 452 5)

> (generate-list 20 roll-die)

221526132643 41:2630665)

> (generate-list 12 (lambda () (list-ref '(red yellow blue) (random 3))))

5 (lblue red yellow blue blue yellow yellow blue red yellow red blue)
>

Demo 2

> (define dots generate list 3 dot))
> dots

(list . . .

> (foldr overlay empty-image dots)

> (sort-dot dots)

% 0 sort-dot: undefined;

-‘mr’*t reference an identifier before its definition
sort-dots dots)

>
(list . . .

> (foldr overlay empty-image (sort-dots dots))

Demo 3

> (foldr overlay emp?:}-'image (sort-dots a))

> (define b (generate-list 10 big-dot))
> (foldr overlay empty-image (sort-dots b))

Task 7 - The Diamond

Specification

Using what you learned from Task 6 as a hint, define a function called diamond that is consistent with the following
specification:

1. The sole parameter is a number indicating how many diamonds will be featured in the design.

2. The function returns an image which consists of the number of diamonds specified by the parameter, where each
diamond is randomly colored and has a side length between 20 and 400.

Demo 1

(define (diamond length)
(define a (generate-list length singleDiamond))
(foldr overlay empty-image (sort—diamonds a))

)

(define (singleDiamond)
(rotate 45
{ square (+ 40 (random 400)) "solid"™ (random-color)
)

{ define (sort-diamonds loc)
([sort loc #:key image-width <)

Demo 2

> (diamond 20)

Task 8 - Chromesthetic renderings

Specification

Define a function called play according to the following specification:
1. The sole parameter is a list of pitch names drawn from the set {c, d, e, f, g, a, b}.

2. The result is an image consisting of a sequence of colored squares with black frames, with the colors determined
by the following mapping: c—blue; d—green; e—brown; f-purple; g-red; a—gold; b—orange.

Constraint: Your function definition must use map twice and foldr one time.

Some auxilliary for you to use

(define pitch-classes ‘(cdefgab))
(define color-names ‘(blue green brown purple red yellow orange))

(define (box color)
(overlay
(square 30 "solid" color)
(square 35 "solid" "black")
)
)

(define boxes
(list

(box "blue")
box "green")
box "brown")
box "purple")
box "red")
box "gold")
box "orange")

— o~ o~ o~~~ —

)

(define pc-a-list (a-list pitch-classes color-names)) (define cb-a-list (a-
list color-names boxes))

(define (pc->color pc)
(cdr (assoc pc pc-a-list))

)

(define (color->box color)
(cdr (assoc color cb-a-list))

Demo

(define (play pitchList
(define colorLl
(map (lambda (x) (pc->color x)) pitchList)
}
(define boxList
(map (lambda (x) (color->box x)) colorList)
)
(foldr beside empty-image boxList)

Lanyuaye. 1aurel, Wl Uenuguing, memny mmn. 120 vio.
£ } 3 3

> (play "(cde fgabccbagifedcac))

Task 9 - Diner

Specification

Imagine a diner which has a menu of exactly 6 items. Furthermore, assume the menu is maintained as an association
list of item/price pairs. Also, assume that the items sold for a day are maintained as a linear list. With this in mind, define
a function called total according to the following specification:

1. The first parameter is a linear list of the items sold over some period of time.
2. The second parameter is an item that appears on the menu.

3. The result is the total amount of money collected on the sale of the given item over the period of time.

Constraint: Your function definition must use map one time and filter one time and foldr one time.

Hints: (1) You might want to write a function which takes the name of an item as its sole parameter and returns the
price of the item. (2) Lambda functions can be very useful.

Demo

———g e —gm ¢ mmeem iy e ———

> menu
' ((hamburger .
> sales
' (hamburger
coke
grilledcheese
malt
grilledcheese
coke
pie
coffee
hamburger
hamburger
coke
hamburger
malt
hamburger
malt
pie
coffee
pie
coffee
grilledcheese
malt
hamburger
hamburger
coke
pie
coffee
pie
coffee
hamburger
malt
hamburger
malt)
> (total
49.5
> (total
0
> (total
13.5
> (total
18
> (total
4

5.5)

sales

sales

sales

sales

sales

n
it}
[
[i1]
n

> (total

L,]

R —— [T

(grilledcheese . 4.5) (malt

"hamburger)
'hotdog)
'grilledcheese)
'malt)

'coke)

'coffee)

3)

(coke

1)

(coffe

1)

(pie .

3.5))

Task 10 - Wild Card

Specification

Numbers can be represented in many ways, the most common is in base ten. This program will take a base 10 int and
turn it into any base representation of your choosing from base 2 to base 36

Demo

(define (baseRep num base)
(define revolutions (baseRevolutions num base))
(createNum revolutions num base)

)

(define (createNum revolutionsNeeded num base)

(append
(cond
((> revolutionsNeeded base)
(append
(list (- (- revolutionsNeeded (- revolutionsNeeded base)) 1))

(list (createNum2 (- revolutionsNeeded base) num base))

]

)

((< revolutionsNeeded base)
(list revolutionsNeeded)

)

{ (= revolutionsNeeded base)
(- (mod num base) (- base 1))

(list(list-ref (myNumList num base) (- (length (myNumList num base)) 1)))
]

(define (createNum2 revolutionsNeeded num base)
(append
(cond
{ (> revolutionsNeeded base)
(- (- revolutionsNeeded (- revolutionsNeeded base)) 1)
(createNum2 (- revolutionsNeeded base) num base)
)
{ (< revolutionsNeeded base)
revolutionsNeeded
)
{ (= revolutionsNeeded base)
(- (mod num base) (- base 1))

(define (baseRevolutions num base)
(define zerosList (filter (lambda (x) (eg? 0 %)) (myNumList num base)))
(define numOfZeros (length zerosList))
(- numofZeros 1)

{define (myNumList num base)

(reverse (map (lambda (x) (list-ref numbers x)) (repeatingNum num base)))
)

(define (repesatingNum num base)

(cond
((>= num 0)
(append
(list (mod num base)) (repeatingNum (- num 1) base)
)
)

((< num 0)
")

)

(define numbers

'{(01 23 45678%abcdefghijklmnopagerstuwvwxyz)
)

(define (mod 2 y)
(define dividedNum (/ = y))
(define decimalRemainder (- dividedNum (floor dividedNum)))
(define finalNum (* decimalRemainder y))
finalNum

> {baéeaep & 2)

{11 0)

> (baseRep 93 18)
'(5 3)

> (baseRep 102 18)
(5 c)

> (baseRep 255 16)
'(f £)

