Rummy 500 With Symbolic AI Opponent
(Draft 4)

Matt Grzenda

Abstract

This paper serves to document the construction and performance of a Rummy 500 game
program with a symbolic Al opponent.






Contents

1. Introduction

2. Background

3. Approach # talk about different approaches to encoding heuristics
(other programs) situation action rules, etc. generic heuristic
architectures (if -> then), self organizing rule bases

4. Knowledge Representations # Do for next week, how to encode a rule,
how to encode the rule base, how you examine the rules, two levels of
abstraction (pseudocode and prolog).

5. Game Playing Framework

6. English explanations of Decisions

7. Statistics and Assessment

8. Possible Extensions and Elaborations

9. Conclusion

10. References



1 Introduction

There are multiple decisions to be made in Rummy 500. From where to draw a card, to which
melds to play on the board, which card to discard at the end of a turn, and more. Since humans
normally play this game, there is a set of heuristics that define a strategy to play the game. It is
also possible to play this game randomly, where decisions about which melds to play. The
program progressed from a random Rummy player, to a rule based symbolic Al player in the
following fashion:

1. Representing the deck and discard pile
2. Representing the players
3.



2 Background

The Construction of a Card Game

All card games were created by humans and all card games are played by humans. In
these card games, humans develop heuristics to play the game in a way which maximizes their
payment. The payment is defined as something of value in a game that an individual would want
to possess. In card games, payments may include points, cards, the ability to lose cards, and, in
the case of Poker, money (von Neuman and Morganstern, 58).

Considering how humans play games, why not construct a card game centered around the
use of pre-programmed heuristics to play the game? Unless the implementation of the game
happens to be able to learn new heuristics, it will only perform as well as the programmer who
created it. However, depending on the heuristics that were encoded, the machine could still be a
formidable opponent. The reasoning behind using a heuristic architecture in this implementation
of Rummy 500 is for a simple, natural design of a machine opponent, while still being able to
create a worthy opponent.

Classic Card Playing Programs

Game playing programs are created for a variety of reasons. Whether it is to see if it is
possible for a machine to beat a human (Mitchell, 156), or because elements of the game can be
abstracted to other parts of society (Billings, Papp, Schaeffer, Szafron, 1), people have been
fascinated with creating Al games for decades. This of course extends to card games, to the point
where many card playing applications are now available to buy on any App Store.

GIB was a bridge playing program created in the late 1990s. Unlike the other bridge
playing programs before it, such as Bridge Baron or Paradise, GIB does not use any human
methodology to play bridge (Ginsberg, 584). Instead GIB uses a brute force search to determine
the best move in a given situation. For selecting cards for example GIB uses the Monte Carlo
Card Selection Algorithm. This algorithm constructs a deal of the bridge game thus far, based on
what is known and which cards are in play. Any unknown cards are randomly dealt out if
necessary. Every possible move is calculated and then compared to find the best move on this
particular deal. This move is then returned (Ginsberg, 585). After the performance of the
machine was published in a bridge magazine, GIB was invited to compete in the world bridge
championships in France, where it finished in 12th place out of a possible 34th against human
opponents (Ginsberg 586).

The significance of GIB lies in its achievements in performance and its radically different
architecture. Each bridge playing program before GIB used a heuristic architecture to play bridge
while GIB used a mini-max style tree generation algorithm to calculate how to respond to a
certain scenario. Unless there is a significant jump in research for heuristic based bridge
programs, GIB has set a new standard of card game architectures.

Another influential card game program was a Texas Hold’em playing program called
Lokibot. It was created as a way to research how Al should respond to imperfect knowledge,



multiple competing agents, risk management, deception, and unreliable information (Billings,
Papp, Schaeffer, Szafron, 1). Other programs before it had created simpler versions of poker to
simply have a game that was playable, but the developers of Lokibot wanted the real-world parts
of the game to be included (Billings, Papp, Schaeffer, Szafron, 2). In order to account for this,
Lokibot evaluates its hand every time a card is turned over during gameplay. To evaluate its hand,
an enumeration technique is used which calculates how good its hand is when compared to every
other possible hand. A percentile is calculated and based on the hand strength and the program
decides whether to check, bet or fold. The enumeration is also weighted to account for different
opponents’ playing strategies and also because not all hands are equally likely (Billings, Papp,
Schaeffer, Szafron, 7). To test out the overall performance of Lokibot, it played itself. The self
play was tournament style and each “opponent” was a different variation of itself with varying
skill level. Overall, the variation with the most strategies encoded to decide on moves won the
most (Billings, Papp, Schaeffer, Szafron, 12)

Lokibot’s significance is its approach to hard problems to solve in Al. By taking real
world behaviours that are hard to define in a general context and applying them to a well defined
space such as Texas Hold’em, these problems can be examined more closely. Under this new
light, dealing with imperfect knowledge, unreliable information, multiple competing agents and
more is just a probability computation. Each one of these real world behaviours also exists
outside of Poker in the world of business and even warfare. What was learned by creating this
Texas Hold’em game could be the basis for stock trading, weather and political forecasting, and
business transactions applications of tomorrow (Billings, Papp, Schaeffer, Szafron, 2).

The Heuristic Architecture

According to Herbert A. Simon and Allen Newell, “A process that may solve a given
problem, but offers no guarantees of doing so, is called a heuristic for that problem” (1957).
Based on this definition, humans tend to be heuristic problem solvers. When a human encounters
a complex problem, rarely is their first thought the most optimal solution to the problem. More
often than not, their first solution is lacking in some way. However, this makes heuristics far from
being useless. Humans tend to think of simple solutions, compared to the exhaustive alternatives.
For example, search algorithms for data structures tend to be heuristic based since the exhaustive
options are more computationally expensive (Kokash, 3).

When a program is said to be based on rules or conditions, this program can be said to be
based on heuristics since the programmer created a process which may solve a given problem.
The Cyc project, for example, was, “an attempt to model the human consensus knowledge.”
(Yuret, 1). Cyc used a very large knowledge base to try and accomplish this goal, with a large
team hired to enter knowledge into the database. Cyc proposed to solve the problems of
brittleness in programs by offering the common sense that humans had. Although Cyc did not
accomplish its main goal to be able to derive a deeper meaning from a provided symbol, it
opened up a treasure trove of research possibilities (Yuret, 25). Flaws in the program created a
demand for new approaches to issues such as how to model symbols in other ways than
deductive inference (Yuret, 16).



Another noteworthy program which is based on a heuristic architecture is called Bagger.
This program is designed to find the optimal way to put all your groceries in bags (Roman,
Gamble, Ball, 26). Bagger does this by grouping all of the items by weight and then packing the
items into bags one at a time starting with the heaviest items and working down to the lightest
weight items (Roman, Gamble, Ball, 26). The significance of using heuristics here is the amount
of computation time saved compared to other methods. An exhaustive method would try every
possible combination of grocery items in bags, and keep track of the results. Once all the
possible combinations of groceries are found, the best option is returned. The exhaustive method
is much more expensive to compute than the heuristic approach due to the excess number of
steps needed to compute it.

Heuristic architectures are not the perfect solution to any problem, but they are also not
the worst solution. The goal of a heuristic architecture is to write a program which solves a
problem the way humans do. Heuristic approaches to problems often lead to the most optimal
solution as heuristics are improved and swapped for better heuristics. If any process that may
solve a given problem is a heuristic, then the all processes thought of by humans are heuristics.

Rummy 500

Rummy 500 is a classic card game played by 2 — 8 people. Each person is dealt 13 cards
to start. On each person’s turn, they start by picking a card from either the deck or the discard
pile. When drawing from the discard pile, you are allowed to draw multiple cards. In order to
legally draw from the discard pile, a person must be able to use at least one of the cards he/she
draws. At this point, the person will look for a meld, or combination of cards, to play on the
board to earn points. A legal meld in Rummy consists of at least three cards. The first type of
move is having three cards of the same face value (i.e. three kings), or, to use poker terms, a
straight flush (i.e. 2, 3, 4 of hearts). Once a player has either produced a meld, played on another
opponent’s meld, or realizes he/she can not make a meld, they put a card in the discard pile and
their turn is over.

Rummy is split into multiple rounds. A round starts once cards are dealt and ends when a
player runs out of cards. Next, points are calculated based on the melds each person played and
based on the board. Cards 2 — 10 are worth 5 points; jacks, queens, and kings are worth 10
points; and Aces are worth either 5 points if played low, or 15 points if played high. A player’s
score is the points from their melds, minus the sum of the cards left in their hand. Once a player
reaches 500 points, the game is over and that player has one the game.



3. Approach



4. Knowledge Representations



5. Game Playing Framework



6. English Explanations of Decisions



7. Statistics and Assessment



8. Possible Extensions and Elaborations



9. Conclusion



10. References

1. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, Princeton
University Press, 1944.

2. Mitchell, Melanie. Artificial Intelligence: a Guide for Thinking Humans. Pelican, 2020.

3. Billings, Darse & Papp, Denis & Schaeffer, Jonathan & Szafron, Duane. (1998). Poker as
a testbed for machine intelligence research. Artificial Intelligence - Al

4. Matthew L. Ginsberg. 1999. GIB: Steps Toward an Expert-Level Bridge-Playing
Program. In Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI '99). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
584-593.

5. Kokash, Natallia. 2005. An Introduction to Heuristic Algorithms. University of Trento,
Italy.

6. Yuret, Deniz. (1996). The binding roots of symbolic Al: a brief review of the Cyc project.

7. G.-.Roma, R. F. Gamble and W. E. Ball, "Formal derivation of rule-based programs," in
IEEE Transactions on Software Engineering, vol. 19, no. 3, pp. 277-296, March 1993,
doi: 10.1109/32.221138.

8. Contributors to Wikimedia projects. “500 Rum - Wikipedia.” Wikipedia, the Free
EncyclopediaWikimedia Foundation, Inc., 15 Sept. 2003,
https://en.wikipedia.org/wiki/500 rum.



https://en.wikipedia.org/wiki/500_rum

