
Here, we will be discussing how memory flows on a computer in
order to gain a deeper knowledge of memory management. Stack and
Heap are very important components of a Computer system. As a
programmer, we have to have a deep understanding of how memory
management functions. In the following two paragraphs, we will
try to explain both the concepts, Stack and Heap.

The runtime stack is a concept used by computer programs, where
the program allocates memory on the stack to store the
function’s arguments and local variables. The stack operates on
a “Last In, First Out”(LIFO) principle, which means that the
last function called is the first one to one to return. It is an
essential part of most programming languages and understanding
how it works is crucial for debugging and optimizing code.

Unlike Stack, heap is a fixed-sized data structure and is not
automatically managed by the program and is managed by the
runtime environment. When a program requests memory from the
heap, the operating system allocates a block of memory from the
heap and returns a pointer to the beginning of that block. The
program can then use this pointer to access and manipulate the
memory in the block. The program is responsible for managing the
heap, including allocating and deallocating memory as needed. If
memory is allocated from the heap but not released when it is no
longer needed, the program may suffer from memory leaks, which
can cause the program to consume more and more memory until it
crashes or runs out of memory.



There are two major approaches to memory management crucial for
a programmer: Explicit Memory Allocation/Deallocation and
Garbage Collection. We will discuss these two concepts in detail
in the next two paragraphs. Both these concepts are crucial
depending on the language you’re using but the more we know, the
better programmers we become,

Explicit Memory Allocation/Deallocation is a way to manually
manage the memory and it requires the programmer to explicitly
allocate and deallocate memory using programming constructs
provided by the language. Once the program no longer needs the
allocated memory, the programmer must explicitly deallocate it.
Failing to deallocate memory can result in memory leaks as well.
This method gives the programmer control over memory management,
which can be very important in performance-critical applications
but it also requires the programmer to be responsible for
managing memory correctly.

Garbage collection, on the other hand, is an automatic
management technique used in programming to manage memory on the
heap. Unlike explicit memory allocation and deallocation,
garbage collection automatically identifies and frees the memory
that is no longer needed by the program. It is widely used in
programming languages like Java, Python, C#, and others. Garbage
collection does prevent memory leaks and dangling pointers but
it has its disadvantages. The garbage collector must
periodically scan the heap, which can consume significant CPU
resources and impact performance. Also, it could introduce
unpredictable pauses in the program execution, which might
hinder consistent performance.



1. Rust allows high control in memory usage due to the
allocation and deallocation of memory through the heap.

2. Without the need for a garbage collector, Rust ensures
memory safety using the concept of ownership and borrowing.

3. Once the block ends, the variable is out of scope. In Rust,
when we declare the variable within a block, we can not
access it after the block ends.

4. In Rust, we define memory cleanup for an object by
declaring the drop function unlike in C++ where we had to
call the delete.

5. Primitive types of Rust can be copied since they have a
fixed size and they live on the stack.

6. Memory can only have one owner in Rust.
7. Passing variables to a function gives up ownership. For

example, if you pass a variable to a certain function, you
can no longer use it.

8. Since Rust is very performance-oriented, it avoids using
deep copying by default. If a and b go out of scope, both
variables will be dropped.

9. We can pass variables by reference. It allows another
function to “borrow” ownership rather than taking it so
that the original still has access to it after the function
is done using it.

10. Slices are like an array or a vector and must be
primitive data, stored on the stack or should be a
reference to another object. Slices will never have
ownership of the heap and hence, Rust will not deallocate
the memory even when they’re out of scope.



Rust was developed by Mozilla to be a practical and secure
alternative to C and C++, which is low-level, and type- and
memory safe. Rust’s “zero-cost abstractions” and its lack of
garbage collection make it appropriate for resource-constrained
environments. Although C and C++ continue to be widely used,
Rust has been getting popular recently. The new users of Rust
and the veterans seem to have very similar experiences, which
suggests consistency.

Rust has been perceived to succeed at its goals of security and
performance. There is also a very active community and they
agreed on high-quality documentation and clear error messages to
be a key strength of Rust. As a low-level programming language,
Rust has been known to extend the programmer's knowledge of
models of secure programming. Rust also supports generics and
modules, and a sophisticated macro system, and its variables are
immutable by default. Most people learn Rust because it's either
interesting or in demand. There are not a lot of Rust
programmers because it is also extremely hard. Rust does boost
your confidence in other languages because you understand the
basics of programming since Rust does not have a lot of
libraries, you are forced to learn the basics on your own.

Talking about drawbacks, Rust does have easy-to-use tools, but
they are very slow. Rust also has a very steep learning curve,
especially for beginners. The borrow checker and programming
paradigms are the hardest to learn. The lack of libraries and
infrastructures causes dependency bloat. Although there are some
high-quality tools available, Rust lacks some critical
libraries. It is also really hard to hire a Rust developer,
which discourages a team to use Rust as a major platform. These
issues are fixable and that is only possible if Rust gets enough
recognition in this programming world. Rust has a lot to offer
and its difficulty level will definitely help programmers



improve their knowledge on memory handling and programming in
general.


