Racket Assignment #3: Recursions in Racket

Learning Abstract:

This lab was very helpful for us to understand recursion in detail. We
solved various problems using recursion only and that also helped us
understand proper syntax and ways to use recursion 1in this particular
language, Racket. I enjoyed doing this assignment and I -Jimplemented
what I learnt in class here.

Task 1: Counting Down, Counting Up

Code

#lang racket
(define (count-down n)
(cond
((=n1) (display n))
((>n0) (display n)
(display "\n")
(count-down (- n 1)))

(define (count-up num)
(cond

((=num 1) (display num)
(display "\n")
)

((>num 1) (count-up (- num 1))
(display num)
(display "\n")
)

Demo

wn

(count-down

(count-down 10)

(count-down 20)

T B R

| Sl S I O T =S i B SR I V]

(count-up 5)

(count-up 10)

]

(count-up 20)

[S I, SR A Y O P T G Y S W ™ O o AN [S o Y S S Y ¥ T e P Y o Y S P T o5 T S R

[R R e N TS
s T U T e S N S O Y SO U R L T B

Task 2: Triangle of Stars

Code

(define (row-of-stars n)
(cond
(C =n0) (display "\n"))

((>n©) (display "*") (row-of-stars (- n 1)))
)

)

(define (triangle-of-stars 1int)
(cond
((=1dnt 0) (display ""))
((> 1dnt 0) (triangle-of-stars (- int 1))
(row-of-stars int)

)

Demo

> (triangle-of-stars
N

[
_—

.
-

P

PN

> (triangle-of-stars 0)
> (triangle-of-stars 15)

o
i3

Ed
ke
=
=
Ed
ke

* ko k kK k ok

=
=
=
=
=
=

Ak ko k

Task 3: Flipping a Coin

Code

#lang racket
(define head-count 0)
(define tail-count 0)

(define (flip)

(define outcome (random 2))
(cond

((eq? outcome 0) (set! tail-count (+ tail-count 1)) (display "t"))

((eq? outcome 1) (set! head-count (+ head-count 1)) (display "h"))
)

(define (flip-for-difference diff)
(cond

((eq? diff (- head-count tail-count)) (display "") (set! tail-count
0) (set! head-count 0))

((not (eq? diff (- head-count tail-count)))
(flip)
(flip-for-difference diff)

)

)

The Demo

> (flip-for-difference 1) \\u‘
thh

> (flip-for-difference 1)

ththh

> (flip-for-difference 1)

h

> (flip-for-difference 1)

h

> (flip-for-difference 2)
tttthtttthhhthttthhhhtttttthtthththtttthhhthhhhhtththhhtttthhhtthhhtthtthtthtttttthhhhhhtht
thhtththhttthhtththhhhhhhhhhthhhh

> (flip-for-difference 2)

hh

> (flip-for-difference 2)
thhh

> (flip-for-difference 2)
hh

> (flip-for-difference 2)
thhthttthtththtthhhhhh

> (flip-for-difference 2)
thttthhhhh

> (flip-for-difference
hhthh

> (flip-for-difference
tthhhthhh

> (flip-for-difference
httthhthtthhhhh

> (flip-for-difference
ttthhhhhh

> (flip-for-difference
htththtthhthhhh

> (flip-for-difference 3)
tttththtthttththttththtthhthttthhhthtththhhtthhthhhttthhthhttttthhhthhhhthtthhtttthhtththhhe
hhththtttthtthtthttththtthhttthtthhthhthhthhthhhthhhhhhtthhtththhthhhthhhh

[¥8] (V8] [¥8] (V8]
— — — -

(V8]

)

> (flip-for-difference 4)
ttthhhthttththhttthhhhhtthhhtttttththththhhhthhhththtthtththhhththhththh

> (flip-for-difference 4)

hhtthhhh

> (flip-for-difference 4)
hthhhttthhhtttttthhtthththhthtthhttthhhhhttttthhthhttthtththtthhthtthhhhtthhhthhthttthhhhhhe
h

> (flip-for-difference 4)

htthththhhhh

> (flip-for-difference 4)

hthhhh

> (flip-for-difference 4)

ththhththhhthtthhththh

> (flip-for-difference 4)

htttththhhtthhhttthhhhhh

> (flip-for-difference 4)
thtthhttthttthhhtttthtttthttthttthhhhtttthhhhhhtthhhthtttthtthtttthttthththhthhthhhhhhhhthhe
hhthhtthhhhhhhthh

>

Task 4: Laying Down Colorful Concentric Disks

CCR Demo

> (ccr 100 50)

> (ccr 50 10)

> (ccr 150 15)

>

CCA Demo

> (cca 160 10 'black 'white)

> (cca 150 25 'red 'orange)

W

CCS Demo 1

> (cecs 180 10 '"(blue yellow red)

> (ccs 180 10 '"(blue yellow red))

>

CCS Demo 2

> (cecs 120 15 '"(brown coral goldenrod yellow olive tan))

> (ccs 120 15 '"(brown coral goldenrod yellow olive tan))

=

Code

(define (random-color)
(color (random 256) (random 256) (random 256))
)

(define (ccr radius diff)
(cond ((<= radius 0) empty-image)
(else (overlay (ccr (- radius diff) diff)
(circle radius "solid" (random-color))

)

(define (cca radius difference color-1 color-2)
(cond ((<= radius 0) empty-image)
(else (overlay (cca (- radius difference) difference color-2
color-1)
(circle radius "solid" color-1)

)

(define (ccs radius difference color-list)
(cond ((<= radius 0) empty-image)
(else (overlay (ccs (- radius difference) difference color-list)
(circle radius "solid" (list-ref color-list (random
(length color-list))))
)

Task 5: Variations on Hirst Dots

Random Colored Tile Demo

7

! random-color-tile)

> (sgquare-of-tiles

>

Hirst Dots Demo

sgquare—-of-tiles 5 dot-tile)

CCS Dots Demo

> (square-of-tiles 7 ccs-tile)

0000©@®0
000POODOO
ON-NONON NoXN-
©000000
000@©@00
©@000000
©00P0@®O

Nested Diamonds Demo

$0600 G
OOOGOO
TR
QOO0
R TR
R RR

» (sguare-of-tiles ¢ wild-square-tile)

(overlay

(square 40 "outline" "black")

(square 40 "solid" (random-color))

)
)
(define (row-of-tiles n tile)
(cond
((=n0) empty-image)
((>n 0) (beside
(row-of-tiles (- n1) tile)
(tile)
)
)
)

(define (rectangle-of-tiles r c tile)
(cond
((=r 0) empty-image)
((>r 0) (above
(rectangle-of-tiles (- r 1) c tile)
(row-of-tiles c tile)

)

(define (square-of-tiles n tile)

(rectangle-of-tiles n n tile)
)

(define (dot-tile)
(overlay

(circle 20 "solid" (random-color))
(square 50 0 "white ")

(define (ccs-tile)

(define (ccs-1 1 j)
(cond ((= (-3) 0) (circle i "solid" (random-color)))
(else
(overlay (ccs-1 (-1 3) 3)
(circle i "solid" (random-color)))

)

(overlay
(circle 50 "outline" "white")
(ccs-1 357)
)

(define (diamond-tile)
(define clr (random-color))

(overlay
(rotate 45 (square 20 "solid" "white"))
(rotate 45 (square 30 "solid" clr))
(rotate 45 (square 40 "solid" "white"))
(rotate 45 (square 50 "solid" clr))
(rotate 45 (square 60 "solid" "white"))
)

)

(define (wild-square-tile)
(define clr (random-color))
(define rotation-a (random 90))
(overlay
(rotate rotation-a (square 20 "solid" "white"))
(rotate rotation-a (square 30 "solid" clr))
rotate rotation-a (square 40 "solid" "white"))
rotate rotation-a (square 50 "solid" clr))
square 90 "solid" "white")

N~ N N~

