Racket Assignment #1: Getting Acquainted with Racket/DrRacket
+ LEL Sentence Generation

Abstract:

In this assignment, I studied and ran a program written in Racket in the DrRacket program
development environment (PDE). I tried learning about the syntax and behavior of the
language. For that, I ran a given program and generated a demo, which is provided below.

Code for LEL Sentence Generator:

#lang racket

; LEL sentence generator, with helper PICK,
; several applications of APPEND, several
applications of LIST, and one use of MAP
with a LAMBDA function.

define (pick list)

list-ref list (random (length 1list)))

e

define (noun)
list (pick '(robot baby toddler hat dog)))

define (verb)
list (pick '(kissed hugged protected chased hornswoggled)))

define (article)
list (pick '(a the)))

define (qualifier)

pick '((howling) (talking) (dancing)
barking) (happy) (laughing)

) O 0 O 0O 0O

~ N~ AN AN A AT AT A AN A AN AN A e

sentence)

display "") ; an artificial something

(define (noun-phrase)

(append (article) (qualifier) (noun))
)

(define (sentence)

(append (noun-phrase) (verb) (noun-phrase))
)

(define (ds) ; display a sentence

(map

(lambda (w) (display w) (display " "))
(

)

(

)

Demo for LEL Sentence Generator:

Welcome to DrRacket, version 8.8 [cs].
Language: racket, with debugging; memory 1limit: 128 MB.
> (pick '"(red yellow blue))

"blue

> (pick '"(red yellow blue))

"blue

> (pick '"(red yellow blue))

'yellow

> (pick '(red yellow blue))

"blue

> (pick '(Racket Prolog Haskell Rust))
'Prolog

> (pick '(Racket Prolog Haskell Rust))
'"Haskell

> (pick '(Racket Prolog Haskell Rust))
'Rust

> (pick '(Racket Prolog Haskell Rust))
'Racket

> (noun)

' (baby)

> (noun)

' (dog)

> (noun)
'(robot)

> (noun)

' (dog)

> (verb)

' (kissed)

> (verb)

' (hugged)

> (verb)

' (hugged)

> (verb)
'(kissed)

> (article)
'(a)

> (article)
'(a)

> (article)
'(the)

> (article)
'(a)

> (qualifier)
")

> (qualifier)
'(dancing)

> (qualifier)
'(laughing)

> (qualifier)
' (happy)

> (qualifier)
")

> (qualifier)
'(laughing)

> (qualifier)
")

> (qualifier)
'(barking)

> (qualifier)
'(dancing)

> (qualifier)

"0

> (qualifier)

"0

> (qualifier)

'(talking)

> (qualifier)

"0

> (qualifier)

"0

> (qualifier)

"()

> (qualifier)

' (happy)

> (noun-phrase)

'(a laughing robot)

> (noun-phrase)

' (the happy hat)

> (noun-phrase)

'(a happy toddler)

> (noun-phrase)

'(a robot)

> (noun-phrase)

'(the toddler)

> (noun-phrase)

' (the happy dog)

> (noun-phrase)

'(the talking robot)

> (noun-phrase)

'(a laughing baby)

> (sentence)

'"(a howling baby hugged the toddler)
> (sentence)

'(the hat protected the happy robot)
> (sentence)

'(a barking baby hugged the baby)
> (sentence)

'(the dog kissed a baby)

> (sentence)

'(a happy baby hugged a baby)
> (sentence)

'(a barking robot hugged the dog)

> (sentence)

'(the robot protected a hat)

> (sentence)

'(the robot chased a baby)

> (ds)

the hat chased the laughing hat

> (ds)

the talking hat chased the laughing dog
> (ds)

the robot hugged a hat

> (ds)

a baby kissed a laughing toddler

> (ds)

the baby hugged the hat

> (ds)

a laughing dog kissed a barking baby

> (ds)

the talking baby chased a toddler

> (ds)

the laughing toddler chased a hat

> (ds)

the howling robot chased a talking dog
> (ds)

the dancing robot hugged the toddler

> (ds)

a laughing dog hornswoggled a talking hat
> (ds)

a howling hat chased a dog

>

