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1 Background

The past few decades have seen an explosion in Ontology research, much of which now is

concerned with the collaboration between the field of Ontology and Computer Science.

With any research there is a need to measure results to understand if changes are bringing

the desired progress, and in a field that routinely focuses on improving the handling of

large data sets, the results themselves can become large and unruly, leading to the need to

employ special computational methods to measure results. This paper will lay out a

background about Ontology and ontologies, provide the motivation for why this project

needs to repurpose a specific similarity metric, and then offer a possible solution and

implementation of the similarity metric proposed.

1.1 What is an Ontology?

The story of Ontology is the story of sorting, cataloging, and classifying the world around

us. It is a subfield of Metaphysics, which in turn is a branch of Philosophy. In its most

general sense, Ontology is concerned with creating a taxonomy of entities and the relations

between the entities, referred to as ontologies. These classifications and relations are

universal and aim to represent reality in a consistent repository1[2]. This is a monumental

task, and in the process of tackling it many types of ontologies have been developed. Two

are of concern to this project.

The first are top level ontologies (TLO). These ontologies classify terms in high level,

general categories. For example, there are the Basic Formal Ontology (BFO) superclasses

1This is at least the perspective conveyed by Barry Allen in [2].
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of object and process2 [2]. Because these classifications are so general, and there are so

few native BFO terms, that at first glance terms assigned to a superclass may not appear

to have much in common get grouped together. For example, in the domain ontology Food

Ontology (FoodOn), Liquid and the consumer-ready food packaging both belong in the

BFO material entity superclass. To get into the specifics, domain ontologies are needed.

Domain ontologies are more granular, and as their name implies, are built to classify

terms in a specific domain. Some examples of domain ontologies include the Ontology of

Electronics (OOE) and the Epilepsy Ontology (EPIO). Instead of large overarching

classifications, domain classes can become incredibly specific, such as the Condiment class

within the (FoodOn) [6]. When using best practices to create ontologies, all domain terms

are children of TLO terms, and together they can create highly consistent and detailed

ontologies.

1.2 Importance of Ontologies

Now that the goal of Ontology, and the types of ontologies, have been outlined an

important question arises. Why put in the time and effort to study and create ontologies?

The answer to this question lies within data analysis and the ever-increasing utilization of

large data sets. The use of ontologies as a whole allows for consistent semantic labeling of

large data sets. By labeling the elements of these massive data sets, they become easier to

compute over, and better insights can be drawn from them [2]. Not only can more be

learned from consistently labeled data, but this practice also allows data to be reused and

shared both within, and outside, of the original organization or domain. These benefits

drawn from using ontologies have been noticed and in response, ontologies are being

developed both by companies and the government in an attempt to help standardize

ever-expanding information systems.

However, the pairing of top level and domain ontologies was not always the norm. The

2Throughout this paper, terms assigned to ontologies are presented using italics, and ontological classes
using bold text.
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modern field of Applied Ontology traces its origins within Bioinformatics [2]. Decades ago

experts in different domains of Bioinformatics started building ontologies, but when trying

to share their ontologies they ran into the issue of siloing. All of their respective ontologies

were well structured, and thoughtfully built, but there was nothing connecting them.

Instead each ontology existed on its own, separated into silos by this lack of centralized

agreement. On their own, each ontology was an outstanding resource to its organizations,

but they lost out on the benefits of sharing information and ontology terms amongst

themselves. In an effort to combat this, TLOs were introduced. While there are multiple

common TLOs, this project focuses on (BFO).

BFO is the first TLO recognized by the International Organization for Standardization

(ISO). It was recognized as ISO/IEC 21838-2:2021 in November of 2021 [1], but even

before becoming an ISO standard BFO had been widely adopted throughout the world,

heavily so within Bioinformatics. This is, of course, because of its close work and

development alongside Bioinformatics since the early 2000’s. According to the official BFO

website, BFO is currently utilized by over 400 ontologies by over 100 organizations [6]. Its

widespread implementation makes it a great candidate to explore the possibilities of

assisting users with automation. By using a TLO that is already standardized the products

of this research can be utilized by an established community.

1.3 Project Motivation

It has been established that ontologies can offer great improvements when computing over

large data sets and the benefits are increased by tying together domain ontologies via

TLOs. So why are there not domain ontologies for every domain and all of their relevant

terms already? The reality of creating domain ontologies is that it is an arduous process

that takes a great length of time, along with close collaboration between domain experts

and ontologists. In addition to the amount of labor required, the process is also prone to

human error and if not created correctly, an ontology might have circular relations between
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terms. Sets of two terms that form these circular relations can be easy to spot with the

human eye, but cycles containing three terms or more can be hard to spot [8]. Thus, in an

attempt to alleviate these burdens the parent project of this smaller project has worked to

create a system that a domain expert can use to efficiently build accurate domain

ontologies.

The Dialog Based Ontology Learner (DBOL) uses current trends in Artificial

Intelligence, such as dialog systems and analogical reasoning, to do just that. Over the past

two years the DBOL team has worked to create and implement a set of questions, known

as the beginner rules, that are intended to assist the user in classifying a term to its correct

BFO superclass3. Before the system can assist the user in creating domain ontologies, it

must first be able to correctly classify terms within the BFO ontology. The end goal is an

automated system that a domain expert can use to create BFO-compliant domain

ontologies. After initial creation of the beginner rules the system was opened to testers.

Using the results of this initial test edits were made and a second round of user testing was

administered. The testing consisted of a short training on how to use the system, followed

by having the user classify five terms using the DBOL, and while attempting to analyze the

results, a new question arose. What does it mean to classify a term incorrectly? There is

the simple “correct” or “incorrect”, but there is more meaning to be found than just “yes”

or “no”. To better understand, consider the following example.

As previously stated, the term laptop with the definition “a portable computer small

enough to use in your lap” has a BFO superclass of object. A visible representation of

this correct classification can be found in figure 1. On the contrary, figure 2 contains two

incorrect classifications. The left side of figure 2 assigns laptop as an object aggregate,

while the right assigns it as an immaterial entity. The classification of object

aggregate, while wrong, is at least more correct than immaterial entity.4

3A superclass is a parent classification. For example, a laptop has a superclass of object.
4All relations in figures 1 and 2 are the BFO “is a” relation. For example, laptop “is a” object and in

turn object “is a” material entity.
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Figure 1: Correct assignment of laptop as an object.
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Figure 2: Incorrect assignment of laptop as an object aggregate (left) and an immaterial
entity (right).
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This is because in the first case the user, with the help of the system, was able to

navigate to the portion of the DBOL concerned with material entities. Therefore even

when the term is classified incorrectly some of its core attributes may still be correct. If a

laptop is being considered an object aggregate then there was confusion as to whether a

laptop is a standalone entity, or if it is somehow in a group, or a group itself of smaller

components. However, an immaterial entity, as its name implies, is not made of matter.

If the DBOL is unable to find out whether the term is physically made of matter, this

points to a different problem than just whether a term is a standalone entity. To make

these judgements consistently a standard measurement is required but to measure, first the

problem must be formalized and abstracted.

1.4 Background Summary

In this section the field of Ontology, some examples of ontologies, and their uses have been

defined and explained. Additionally, the goal of automating ontology creation has been

established and the current goal of the parent project has been shared. Finally, the concern

with measuring within ontologies has been posed and will motivate the remainder of this

paper.
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2 From Ontology to DAGs

2.1 Defining the Problem

Now that the motivation of this topic study has been established and the key question has

been asked, now the problem can be abstracted. To begin, the constraints of the real world

use case need to be explored. From the figures used in the example in the previous section

some patterns can be found. The first key takeaway is that the terms used in each figure

remain the same. Not only that, but all of the relations between terms are the BFO “is a”

relation, used to assign superclasses and organize terms in pairs of parent and child.

Looking at the figure it is not a stretch to pick up on the graph structure that the nodes

and their relations seem to create.

These three features of the BFO hierarchy can then be mapped to features of a graph.

The sets of terms being identical can instead be understood as the vertices of two graphs

being the same. Since all the relations are the same, this corresponds to all weights of a

graph’s edges being the same. Finally, since the ontologies differ in what nodes are

connected to each other, the graphs would have two different sets of edges. With these

three aspects of the abstracted graphs, it can be seen that the BFO hierarchy and any

terms assigned to their BFO superclass form a directed acyclic graph, also known as a

DAG.

2.2 Defining DAGs

Before finalizing ontologies’ status as DAGs, first DAGs must be defined. The following

definitions were adapted from Digraphs Theory, Algorithms and Applications [3].

Definition 1. A directed graph D is a non-empty finite set V (D) of vertices and a finite

set E(D) of ordered pairs of distinct vertices called edges. Edges have a tail and a head,

meaning that the edge (u, v) is different from the edge (v, u).
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Figure 3: BFO 2.0 Hierarchy from the BFO Github [7]

Definition 2. Directed Acyclic Graph: A directed graph without a cycle.

Definition 3. A cycle is a non-trivial path from vertex v to v.

With these definitions, it is possible to organize the BFO ontology as a DAG. The

initial step is straightforward. If the terms are the nodes and the relations between them

the edges, and since the BFO “is a” relation is a direction relation, there is clearly a

directed graph. The difficulty comes from ensuring that there are no cycles within the

directed graph, and this is where it becomes crucial to limit the current project to

measuring over only the BFO ontology. Due to BFO being a single finite, and small

ontology, proving that it does not contain cycles is trivial. Figure 3 displays the total BFO

hierarchy. Since, all new terms are assigned to a preexisting BFO classification, they would

be leaf nodes, or nodes with no children.5 No cycles are found within the BFO-defined

classes, and by just adding leaf nodes, without relations between them, the resulting

ontology, and its graph representation, will also not contain cycles.

5At the top of BFO everything is a subclass of entity. In a mirroring sense there is a BFO term, the
BFO nothing, which every term and superclass is a parent of. This is largely overlooked in this paper
since it does not change BFO’s status as a DAG and in fact could possibly be used to narrow the ontology’s
structure down further into a lattice.
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2.3 DAG Guarantees in Domain Ontologies

If the TLO BFO is a DAG, then what can be guaranteed of BFO-compliant domain

ontologies? Since the DBOL will ideally be used to create full domain ontologies, being able

to measure over a finite well-established set of terms is useful, but not rather interesting.

Instead it is desirable to extend any measurement from BFO into the domain ontologies.

It is the generally held belief within Applied Ontology that domain ontologies are

DAGs [2]. If an ontology is built with the BFO best practices, it will be a DAG and ideally

might even be a tree. However, multiple inheritance is common within domain ontologies,

and some may even be afflicted with sets of cyclic terms. As mentioned in subsection 1.3,

cycles of two are easy to find, however cycles of three can be harder to detect and often

require computers to find[8]. As far as research can find, no one has proven that domain

ontologies are DAGs, and for this topic study this is not a concern since the current

measurements are solely over the BFO hierarchy. This proof of whether domain ontologies

are DAGs is outside the scope of this topic study and left for another day.
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3 Similarity Metrics

3.1 Defining Katz Similarity

Now that the BFO ontology can be abstracted into a DAG, it is possible to start measuring

the difference in term assignments. For this project Katz Similarity (KS) has been chosen

for the task. KS was first coined by Leo Katz in 1953 and was originally known as Katz

Centrality and was used to measure the “influence of an actor within a graph” [4].

Because, the specific case being measured, where both graphs share a set of nodes and

have a different edge set, KS is a perfect candidate. Additionally, KS accounts for the

direction of edges within an ontology as well as helps to measure the importance of the

parent child relation and both the length and number of all paths between two nodes in the

graph. All of which help incorporate the concept of the least common ancestor (LCA). The

LCA is why in figure 2 the left assignment is closer. The LCA of object and object

aggregate is material entity, while the LCA of object and immaterial entity is

independent continuant. Since the least common ancestor of the first is closer, terms

classified within their superclass are more similar.

This project’s implementation of KS is based heavily off of the work of Nayak et. al,

who used KS to measure differences of knowledge hierarchies and their evolution. The

knowledge hierarchies examined in that project are closely related to ontologies, and were

mostly focused on large language repositories such as WordNet [5]. Together this all adds

up to KS earning a place as the front runner of similarity metrics for this project.

The final comparison of two graphs is known as the Katz Graph Similarity (KGS) and

requires three steps to find. The KGS is a calculation requiring two vectors known as the

Katz Similarity Vector (KSV) of each graph, and to find the KSV of each graph you must

calculate the KS of each node.

When working with KS it is important to label the two graphs distinctly, say Graph
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One (G1) and Graph Two (G2), note that both are DAGs that have the same nodes or

vertices. Throughout the remaining explanation of KS these graphs will be consistently

referenced.

The first step in finding the KGS is finding the KS between the nodes of the graph.

Definition 4. [5] The Katz Similarity between nodes u and v of the graph G; is defined as

KS(u, v) =
∑
l

tαl

where t is the number of paths length l from u to v and 0 < α < 1. Note: α is a tunable

variable typically set to 0.05.

To help illustrate the KS between two nodes consider the following. There are two vertices

u and v of the graph G. They have one path length 1 and three paths length 2. Therefore,

the Katz similarity is equal to α + 3α2.

All of the KS values can then be stored in the KSV.

Definition 5. [5] The Katz Similarity Vector (KSV): A graph can be represented by its

KSV where the nth element of the vector is the Katz Similarity of the nth pair of vertices in

V × V .

To maintain consistency between graphs, the KSV should be ordered by breadth-first

traversal6. Consider a set of nodes in graph G, with m nodes, in order of a breadth-first

search so each node is numbered 1, 2, . . . ,m. The vector can then take form:

KSV (G) =

[
KS(1, 1), KS(1, 2), · · · KS(1,m), KS(2, 1), · · · KS(m,m)

]
.

The final step is to calculate the KGS using the newly formed KSVs.

6The KSVs being in the same order is all that matters, a breadth-first traversal was chosen for ordering
to maintain consistency throughout the project, but when implemented the KSVs were stored as hashmaps
making order irrelevant.
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Definition 6. [5] Katz Graph Similarity: Given two Katz similarity vectors KSV1 and

KSV2 derived from graphs G1 and G2, with the same vertex set. Then,

KGS(G1, G2) =
2

1 + exp(γ||KSV1(:, i)−KSV2(:, i)||p)

where ||.||p is the Lp-norm of the ith vector differences and γ > 0 is tunable parameter.

For this project implementation, an Lp norm of 1 was used, measuring the vectors in

Manhattan distance. The KGS(G1,G2) is the final result and is bounded as 0 < KGS ≤ 1,

where a KGS of 1 is returned for identical graphs and as the graphs become more different

the similarity value decreases.

3.2 Speeding up Katz

However calculating the KS within a graph can start to cause issues. This part of the

procedure is computationally expensive since every node must be compared to every other

node in the graph. The time complexity caused by this is the main downside to using KS

and in large ontologies that can contain tens of thousands of terms, KS seems unusable.

However, there is a method to speed up the calculation of the KS. The properties of DAGs

can be harnessed to calculate the KS without comparing every node to each other.

Instead of computing the KS in any order, the KS must be evaluated in order of depth

first traversal. Before comparing any nodes first the graph must be sorted in “topological

order”, by depth, with the root being place at level 0, and every other node being placed in

lowest possible level when compared to the root. For example, the root and a node v can

be connected by two paths, the first of length two, the second of length 2, the second of

length 4, then v belongs in in level 2. Calculating KS is now done from the lowest

topological ordering to the highest, using the following formula.
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Definition 7. [5] For a graph G; in topological order with vertices u,v such that,

KS ′(u, v) = α×

( ∑
p∈parents(v)

KS ′(u, p)

)
+ α×Υ(u → v)

where Υ(u → v) = 1 when there is an edge from u to v and 0 otherwise.

Consider the following reasoning as to why this is possible. Let G be a DAG with root r.

Also consider a subset of G’s nodes, p1, p2, . . . pn, and v of which all pi are the parents of v.

Since the only way to traverse to v is through one of its parents, and since KS is being

calculated by topological order, when calculating the similarity between any node called u

belonging to a lower order than v then KS(u, p) is already known. Therefore, the

KS(u, v) = KS(u, p) + α, if u and v are connect and KS(u, v) = KS(u, p) otherwise.

After the topological level is computed the nodes are “removed” from the graph.

Removed being a lose term that means to stop calculating over them. Whether the terms

are being physically removed from a database is a decision made depending on the

language KS is implemented in.

3.3 Implementing Katz Similarity in Java

Previous implementations of KS have been programmed in C. However, the DBOL is a

Java project and thus for this paper KS will be implemented in Java. Choosing to write

this code in Java leads to similar code as the C implementation, but calculating the

individual KSs differs. Instead of finding a topological ordering and then computing in that

order, the calculation of KS is done starting at the root and then by performing a

breadth-first traversal throughout the graph. By moving through the graph breadth-first,

the program moves through in ascending topological order. As KS values are calculated,

instead of removing nodes from the graph, the values are stored in hashmaps that are then

later used as the KSV to compute the final KGS. The KS function itself is recursive to

allow for fewer calculations, instead using the quick look-ups of the hashmaps to cut the
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object aggregate* immaterial entity
α = 0.05, γ = 0.05 1.0 0.9999999921875001
α = 0.10, γ = 0.05 1.0 0.9999997500000001
α = 0.05, γ = 0.10 1.0 0.9999999843749998

Figure 4: KGS of laptop as both an object aggregate and immaterial entity with various
α and γ

computation time. The code itself can be found in the appendix section 5.

3.4 Performance on Ontologies

Now that Katz Similarity has been defined, sped up, and, most importantly, implemented

in Java, does it work? To test this, remember the previous example of assigning the term

laptop. The BFO ontology was imported as the required edge list format, and laptop was

added to three separate version of the file with its correct, close, and far classifications.

Then the KGS was found for both the close and far classification examples, with varying α

and γ. All of which can be seen in figure 4.

While the immaterial entity column is performing as expected, the object

aggregate is not. Since a KGS equal to 1 is only supposed to be possible when the graphs

are identical, this appears to be a major issue. However, the reasoning lies in precision.

The definition of KGS assumes that however the value is being computed, there is an

infinite level of precision, or in other words that rounding errors will not occur. The

difference in the correct assignment of laptop and its assignment of object aggregate are

simply too close for Java doubles to hold the difference. This was an issue that was

expected on large ontologies, but was surprising to see with BFO since it is so small (only

38 relations). However, this issue can be avoided, while also speeding up the calculation of

the KGS. Instead of attempting to measure the entirety of both graphs, instead the KGS

can be approximated.

While this project was not able to implement the approximation of KGS, it is the next
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logical step. The process is straightforward. Instead of calculating the KS of each node to

every other node, instead small sections of the graphs are extracted, and the KGSs of these

subgraphs are calculated [5]. This reduces the number of computations needed to calculate

the KGS, which beats out even the sped up version of KGS using both the KS ′ and

breadth-first traversal scheme. Additionally, by only examining small portions of the larger

graph at a time, precision can be kept while avoiding the use of specialized types, such as

BigDecimal, that retain precision, but add overhead.

As mentioned, the code written to implement this project can be found in the

appendix, section 5.
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4 Conclusion

Future work on this project would have a few next steps. First, the code base needs to be

reformatted to address some choices made in early stages of development that no longer

make sense. The Vertex class and the AuxUtils class can be either removed, or their

functionality moved into the CalcUtils class, which can be more meaningfully renamed to

Graph, since it represents and allows for calculation over the ontology as a graph.

Additionally, work would need to be done to compile and then import the user

classifications from the parent projects results. A pipeline could be set up to transform the

results from their current format into usable edge files, along with another edge set of

agreed classifications. Finally, the most important next step would be to implement the

KGS approximation. With BFO alone being too large to detect small changes, having the

BFO hierarchy, along with hundreds of user terms, would likely also cause loss of precision

and rounding issues.

However, it is clear that the use of KGS similarity is a possible path to improve the

evaluation of new tools being built to help ontologists, not only for the DBOL project

team, but in any case where two ontologies of the same term need to be compared.
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5 Reflection

This project is an offshoot of the larger project that I worked on as an independent study,

and then eventually as my Honors Thesis. I enjoyed being able to approach Ontology with

a more mathematical lens, and since the goal of the parent project is aimed at bringing

more structure to creating ontologies, this fit in great. When I started as a Math major I

had never programmed before, and only wandered into the field due to the cognate

requirements of the degree. I am glad I did since the intersection between the two fields is

where I find the work I enjoy the most.

Overall, I thought the capstone project was a great opportunity to bring in parts of my

degree from Math and Computer Science. This was especially apparent when I was

presenting for this project. When presenting at both the MAA Seaway Meeting, and at

capstone presentations, I had to make sure to take care explaining topics from Computer

Science. On the other hand, when sharing this work with the DBOL team, I found myself

explaining the Math behind the similarity metric and why Katz Similarity was the right

choice. Having spent so much time at the crossing of Math and CS I found myself blending

which topics came from each, and having to slow down and remind myself so that I could

make the work accessible to others.

By far my favorite part of this capstone, and the honors thesis, was presenting about

the work and sharing it with others. Both in formal settings like presentations and

meetings, as well as informal when talking with classmates. This was a great experience

and I would encourage others to try and combine their work for a Math capstone with

other research when possible.
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Appendix

This appendix includes the code written to implement calculating the KGS in Java. The
code can also be found online at in this GitHub repository
https://github.com/KeithTAllen/Katz-Similarity.

5.1 Main class

Main class currently set up to show the laptop example discussed in Section 1.3.

1 import java.io.FileNotFoundException;

2 import java.util.HashMap;

3

4 public class Main {

5 public static void main(String [] args) throws FileNotFoundException {

6 /*

7 * This main method calculates both the close and far assignments

8 * of terms discussed in the paper. Attempts were made to also

9 * calculate using both depth first and slow searches. However ,

10 * since the BFO ontology is small , accurate measurements were

11 * not possible.

12 */

13 double closeKGS = getKgsBreadthFirst(

14 "src/main/resources/LaptopCorrect",

15 "src/main/resources/LaptopClose");

16 System.out.println("Close assignment KGS: " + closeKGS);

17

18 double farKGS = getKgsBreadthFirst(

19 "src/main/resources/LaptopCorrect",

20 "src/main/resources/LaptopFar");

21 System.out.println("Far assignment KGS: " + farKGS);

22 }

23

24 /*

25 * Calculates the KGS of two given graph given as edge lists , using

26 * breadth first search. Order of steps to find KGS:

27 * create AuxUtils

28 * auxUtils read edge lists

29 * create CalcUtils

30 * get hashmap returned from a calcKS function

31 * call KGS

32 */

33 public static double getKgsBreadthFirst(String fileA , String fileB)

34 throws FileNotFoundException {

35 // Create representation of each graph

36 AuxUtils auxUtilsA = new AuxUtils ();

37 auxUtilsA.readEdgeList(fileA);

38

39 AuxUtils auxUtilsB = new AuxUtils ();

40 auxUtilsB.readEdgeList(fileB);

41

42 // Create CalcUtils for each graph

43 CalcUtils calcUtilsA = new CalcUtils(auxUtilsA.parents ,
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44 auxUtilsA.children ,

45 auxUtilsA.allVertices ,

46 auxUtilsA.root);

47

48 CalcUtils calcUtilsB = new CalcUtils(auxUtilsB.parents ,

49 auxUtilsB.children ,

50 auxUtilsB.allVertices ,

51 auxUtilsB.root);

52

53 // Calculate KSV

54 HashMap <String , Double > KSVA =

55 calcUtilsA.breadthFirstCalculateKSV(auxUtilsA.root);

56

57 HashMap <String , Double > KSVB =

58 calcUtilsB.breadthFirstCalculateKSV(auxUtilsB.root);

59

60 // Calculate and return KGS

61 return calcUtilsA.calculateKGS(KSVA , KSVB);

62 }

63

64 public static void printGraph(AuxUtils auxUtils){

65 System.out.println("Root: " + auxUtils.root);

66 System.out.println("Full vertex list: " + auxUtils.allVertices);

67 }

68 }

Main class output in which it can be seen that there is not enough precision to detect
small classification and these must instead be solved by approximation.

1 Close assignment KGS: 1.0

2 Far assignment KGS: 0.9999999921875001

3

4 Process finished with exit code 0

5.2 AuxUtils class

Used to convert from a parent child end list into an Object representing the graph.

1 /*

2 * Functions needs to organize and parse through the data are stored here

3 * and can be accessed by creating an AuxUtils object. Originally AuxUtils

4 * was also supposed to handle topological ordering and other bookkeeping.

5 * This was instead handle via traversal order in the CalcUtils

6 */

7

8 import java.io.File;

9 import java.io.FileNotFoundException;

10 import java.util.ArrayList;

11 import java.util.HashMap;

12 import java.util.HashSet;

13 import java.util.Scanner;

14

15 public class AuxUtils {

16 /*
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17 * variable for AuxUtils

18 */

19

20 // list of parents within a graph | Key = Child |

21 // Value = ArrayList of the child’s parents | No root

22 HashMap <Vertex , ArrayList <Vertex >> parents = new HashMap <>();

23 // list of children within the graph | Key = Parent |

24 // Value + ArrayList of all the parents children

25 HashMap <Vertex , ArrayList <Vertex >> children = new HashMap <>();

26 // distinct list of all vertices in the graph

27 HashSet <Vertex > allVertices = new HashSet <>();

28 // the root of the graph determined by finding the vertex key in

29 // parents that has a null ArrayList

30 Vertex root;

31

32 /*

33 * readEdgeListFile

34 *

35 * Creates a parents list , a child list , find the root , and a list

36 * of all vertices.

37 */

38 public void readEdgeList(String fileName)

39 throws FileNotFoundException {

40 // establish scanner with the file

41 Scanner scanner = new Scanner(new File(fileName));

42

43 // for every line in the File

44 while(scanner.hasNextLine ()){

45 // grab the line

46 String line = scanner.nextLine ();

47

48 // create a vertex for the lines parent and child

49 Vertex parent = new Vertex(line.substring(

50 0, line.indexOf(’ ’)));

51 Vertex child = new Vertex(line.substring(

52 line.indexOf(’ ’) + 1));

53

54 // add to the HashSet of all vertices

55 allVertices.add(parent); allVertices.add(child);

56

57 // Create parents set

58 // if the Vertex already exists in the parents map.

59 ArrayList <Vertex > parentSet;

60 if(parents.containsKey(child)) {

61 parentSet = parents.get(child);

62 }

63 // not in the parents map

64 else { parentSet = new ArrayList <>(); }

65 // add the current parent and place back in HashMap

66 parentSet.add(parent);

67 parents.put(child , parentSet);

68

69 // Create children set

70 // if the Vertex already exists in the child map.
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71 ArrayList <Vertex > childrenSet;

72 if(children.containsKey(parent)) {

73 childrenSet = children.get(parent);

74 }

75 // not in the children

76 else { childrenSet = new ArrayList <>(); }

77 // add the current child and place back in HashMap

78 childrenSet.add(child);

79 children.put(parent , childrenSet);

80 }

81

82 // find the root of the graph

83 for(Vertex v : allVertices){

84 if (parents.get(v) == null){

85 root = v;

86 }

87 }

88 }

89 }

5.3 CalcUtils class

Used to calculate the KS, KSV, and KGS of a graph.

1 import java.util .*;

2

3 public class CalcUtils {

4

5 // instance variables

6 HashSet <Vertex > allVertices;

7 HashMap <String , Double > katzSimilarities;

8 HashMap <Vertex , ArrayList <Vertex >> parents;

9 HashMap <Vertex , ArrayList <Vertex >> children;

10 HashMap <String , Double > ksv;

11 Vertex root;

12 double alpha = 0.05;

13 double gamma = 0.05;

14

15 /*

16 * Constructors

17 */

18

19 // Used default value of 0.05 for alpha and gamma

20 public CalcUtils(HashMap <Vertex , ArrayList <Vertex >> parents ,

21 HashMap <Vertex , ArrayList <Vertex >> children ,

22 HashSet <Vertex > allVertices , Vertex root){

23 this.katzSimilarities = new HashMap <>();

24 this.ksv = new HashMap <>();

25 this.parents = parents;

26 this.children = children;

27 this.allVertices = allVertices;

28 this.root = root;

29 }
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30

31 // sets alpha and gamma to the given parameters

32 public CalcUtils(HashMap <Vertex , ArrayList <Vertex >> parents ,

33 HashMap <Vertex , ArrayList <Vertex >> children ,

34 HashSet <Vertex > allVertices , Vertex root ,

35 double alpha , double gamma){

36 this.katzSimilarities = new HashMap <>();

37 this.ksv = new HashMap <>();

38 this.parents = parents;

39 this.children = children;

40 this.allVertices = allVertices;

41 this.root = root;

42 this.alpha = alpha;

43 this.gamma = gamma;

44 }

45

46 /*

47 * Used to calculate the Katz Similarity Vector (ksv). Does assume

48 * that parents is an exhaustive list of vertices from the graph.

49 * Each graph gets its own calcUtils

50 */

51 public HashMap <String , Double > slowCalculateKSV (){

52 HashMap <String , Double > slowKsv = new HashMap <>();

53 // for every vertex u in the graph

54 for (Vertex u : allVertices) {

55 // for every vertex v in the graph

56 for (Vertex v: allVertices){

57 // create the key for the ksv

58 String key = u.toString () + v.toString ();

59 // calculate ks(u,v) and place it in the hashmap

60 slowKsv.put(key , calculateKS(u,v));

61 }

62 }

63 return slowKsv;

64 }

65

66 // depthFirst search of the child nodes

67 public HashMap <String , Double > depthFirstCalculateKSV(Vertex u){

68 // for every vertex

69 for (Vertex v : allVertices) {

70 // create the key for the ksv

71 String key = u.toString () + v.toString ();

72 // calculate ks(u,v,alpha) and place it in the hashmap

73 ksv.put(key , calculateKS(u,v));

74 }

75 // base case: if u has no children

76 if(children.get(u) == null || children.get(u).isEmpty ()) {

77 // do nothing

78 }

79 // recursive step

80 else {

81 // for each of the children

82 for (Vertex v : children.get(u)) {

83 // call this recursively on all the child’s children
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84 depthFirstCalculateKSV(v);

85 }

86 }

87 // once done return the ksv

88 return ksv;

89 }

90

91 // breadthFirst search of the child nodes

92 public HashMap <String , Double > breadthFirstCalculateKSV(Vertex root){

93 // create a queue of what node to visit next and a HashSet of

94 // nodes we have visited

95 Queue <Vertex > vertexQueue = new LinkedList <>();

96 HashSet <Vertex > visited = new HashSet <>();

97 HashMap <String , Double > tempKSV = new HashMap <>();

98

99 // add the root to the queue

100 visited.add(root);

101 vertexQueue.add(root);

102

103 // while we still have nodes to visit

104 while ( !vertexQueue.isEmpty ()) {

105 Vertex u = vertexQueue.poll();

106

107 for (Vertex m : allVertices) {

108 // create the key for the ksv

109 String key = u.toString () + m.toString ();

110 // calculate ks(u,v) and place it in the hashmap

111 tempKSV.put(key , calculateKS(u, m));

112 }

113

114 // if u has no children we have nothing to do. Skip ahead to

115 // next dequeue

116 if(children.get(u) == null || children.get(u).isEmpty ()) {

117 // do nothing

118 }

119

120 // otherwise u has children , then add them to the queue.

121 else {

122 for ( Vertex v : children.get(u)) {

123 // if we have already visited v

124 if ( !visited.contains(v)) {

125 // we have visited v

126 visited.add(v);

127 // add v to the queue , so we can do the same in

128 // the next run.

129 vertexQueue.add(v);

130 }

131 }

132 }

133 }

134 // once done return the ksv

135 return tempKSV;

136 }

137
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138 // calculates the KS of two given nodes using the global alpha

139 public double calculateKS(Vertex u, Vertex v){

140 String key = u.toString () + v.toString ();

141 // base case

142 if(u.equals(v)){ return 0.0; }

143 // the value has already been calculated , just return it

144 else if(katzSimilarities.containsKey(key)){

145 return katzSimilarities.get(key);

146 }

147 // otherwise calculate the value

148 else {

149 double parentsSum = 0;

150 if (parents.get(v) == null) { return 0; } // special root case

151 // get the sum of the values of all the parents

152 for ( Vertex p : parents.get(v) ) {

153 parentsSum += calculateKS(u, p);

154 }

155 // calculate the final katz similarity and place in the map

156 double katzSim = (alpha * parentsSum) +

157 (alpha * isConnected(u,v));

158 katzSimilarities.put(key , katzSim);

159 return katzSim;

160 }

161 }

162

163 // returns 1 if there is a path from parent to child , otherwise 0

164 private double isConnected(Vertex u, Vertex v) {

165 if (parents.get(v).contains(u))

166 return 1.0;

167 else

168 return 0.0;

169 }

170

171 // calculate the Katz Graph Similarity measurement

172 public double calculateKGS(HashMap <String , Double > ksva ,

173 HashMap <String , Double > ksvb){

174 double denominator = (1 + (Math.exp(gamma * lpNorm(ksva , ksvb))));

175 return 2/ denominator;

176 }

177

178 private double lpNorm(HashMap <String , Double > ksva ,

179 HashMap <String , Double > ksvb) {

180 double total = 0.0;

181 for (String key : ksva.keySet ()){

182 try {

183 double v = Math.abs(ksva.get(key)) -

184 Math.abs(ksvb.get(key));

185 total += v;

186 }

187 // if the current vertex pair is not one of the ksvs

188 catch (NullPointerException n){

189 System.out.println(n + "KSV is not complete");

190 System.out.println(key);

191 }

25



192 }

193 return total;

194 }

195 }

5.4 Vertex class

Used to represent a vertex, or node, within the graph. This ended up being a poor
implementation choice.

1 /*

2 * At one point the Vertex was supposed to know much more about itself ,

3 * in hindsight a String would have worked just as well.

4 */

5

6 import java.nio.ByteBuffer;

7

8 public class Vertex {

9 // instance variables

10 private String name;

11

12 // constructor

13 public Vertex(String name) {

14 this.name = name;

15 }

16

17 // simple getters and setters

18 public String getName () { return name; }

19 public void setName(String name) { this.name = name; }

20

21 // toString and compare

22 public String toString () {

23 return name;

24 }

25

26 @Override

27 public boolean equals(Object o) {

28 if (o == this)

29 return true;

30 if (!(o instanceof Vertex))

31 return false;

32 Vertex other = (Vertex) o;

33 boolean nameEquals = (this.name == null && other.name == null)

34 || (this.name != null && this.name.equals(other.name));

35 return nameEquals;

36 }

37

38 @Override

39 public int hashCode () {

40 ByteBuffer bytes = ByteBuffer.wrap(name.getBytes ());

41 return bytes.hashCode ();

42 }

43 }
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5.5 Importer class

Reads in and converts a .owl file into a parent child edge list which can then be used to
calculate the KGS.

1 /*

2 * Class to import an .owl file and create a parent child edge set list

3 * needed to calculate the KGS. Based heavily upon the work of

4 * Dr. Daniel Schlegel (GitHub: digitalneoplasm) from the parent project

5 * of this project , that I also worked on.

6 */

7

8 import org.semanticweb.owlapi.apibinding.OWLManager;

9 import org.semanticweb.owlapi.model .*;

10 import org.semanticweb.owlapi.reasoner.OWLReasoner;

11 import org.semanticweb.owlapi.reasoner.structural

12 .StructuralReasonerFactory;

13

14 import java.io.File;

15 import java.io.FileWriter;

16 import java.io.IOException;

17 import java.util.HashMap;

18 import java.util.List;

19 import java.util.Map;

20

21 public class Importer {

22

23 // LABEL_NAMING_MODE decides not to use IRIs in the LaptopCorrect ,

24 // instead naming terms after their labels.

25 private static final boolean LABEL_NAMING_MODE = true;

26

27 private static final Map <String , String > iriLabelMap =

28 new HashMap <>();

29

30 public static void main(String [] args)

31 throws OWLOntologyCreationException , IOException {

32 OWLOntology ontology = loadOntology(

33 "src/main/resources/bfo.owl");

34

35 FileWriter writer = new FileWriter(

36 "src/main/resources/output");

37

38 // Write OWL Subclass / Superclass Data //

39 List <OWLClass > classes = ontology.classesInSignature ()

40 .filter(c -> !isDeprecated(c, ontology)).toList ();

41 List <OWLObjectProperty > properties = ontology

42 .getObjectPropertiesInSignature ().stream ()

43 .filter(c -> !isDeprecated(c, ontology)).toList ();

44

45 // get a reasoner for the ontology

46 OWLReasoner reasoner = (new StructuralReasonerFactory ())

47 .createReasoner(ontology);

48

49 /*
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50 go through each class and create the edge list file that

51 we are looking for

52 */

53

54 if(LABEL_NAMING_MODE) resolveLabels(classes ,

55 properties , ontology);

56

57 // for every class in the ontology

58 for(OWLClass c : classes){

59 // for every subclass write the relation of

60 // the two into the file

61 for(OWLClass sub : getDirectSubclasses(c, reasoner)){

62 String cl = c.getIRI () + "";

63 String su = sub.getIRI () + "";

64 writer.write(cl.substring(

65 cl.indexOf("#") + 1) + " " +

66 su.substring(su.indexOf("#") + 1) +

67 "\n");

68 }

69 }

70

71 writer.close();

72 }

73

74 public static boolean isDeprecated(OWLEntity oc , OWLOntology ont){

75 if (oc.getIRI ().getShortForm ().contains("ObsoleteClass"))

76 return true;

77 for(OWLAnnotationAssertionAxiom oaaa :

78 ont.getAnnotationAssertionAxioms(oc.getIRI ())){

79 if (oaaa.getProperty ().getIRI ().getShortForm ()

80 .equals("IAO_0100001")) // term replaced by

81 return true;

82 }

83 return ont.getAnnotationAssertionAxioms(oc.getIRI ()).stream ()

84 .anyMatch(a -> a.getProperty ().isDeprecated () &&

85 a.getValue () instanceof OWLLiteral &&

86 (( OWLLiteral) a.getValue ()).getLiteral ().equals("true"));

87 }

88

89 // takes in a filename and creates an ontology

90 // from the given owl document

91 public static OWLOntology loadOntology(String inputFilename)

92 throws OWLOntologyCreationException {

93 OWLOntologyManager manager = OWLManager

94 .createOWLOntologyManager ();

95 return manager.loadOntologyFromOntologyDocument(

96 new File(inputFilename));

97 }

98

99 // get the subclasses of a class in the onotlogy

100 public static List <OWLClass > getDirectSubclasses(

101 OWLClassExpression oce , OWLReasoner reasoner){

102 return reasoner.getSubClasses(oce , true).entities ()

103 .filter(oc -> !isNothingClass(oc)).toList ();
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104 }

105

106 // checks if the class is the BFO nothing?

107 public static boolean isNothingClass(OWLClass oc){

108 return oc.getIRI ().getShortForm ().equals("Nothing");

109 }

110

111 public static void resolveLabels(List <OWLClass > classes ,

112 List <OWLObjectProperty > properties ,

113 OWLOntology ont){

114 for (OWLClass c : classes){

115 for(OWLAnnotationAssertionAxiom oaaa :

116 ont.getAnnotationAssertionAxioms(c.getIRI ()))

117 if (oaaa.getProperty ().getIRI ().getShortForm ()

118 .equals("label")) {

119 String oaaastr = oaaa.getValue ().toString ();

120 int langat = oaaastr.lastIndexOf("@");

121 int typestr = oaaastr.lastIndexOf("^^xsd");

122 oaaastr = (langat > -1) ? oaaastr.substring(0, langat)

123 : oaaastr;

124 oaaastr = (typestr > -1 && typestr > langat && typestr

125 <= oaaastr.length ()) ?

126 oaaastr.substring(0, typestr) : oaaastr;

127 iriLabelMap.put(c.getIRI ().getShortForm (),

128 oaaastr.toLowerCase ());

129 }

130 }

131 for (OWLObjectProperty p : properties){

132 for(OWLAnnotationAssertionAxiom oaaa :

133 ont.getAnnotationAssertionAxioms(p.getIRI ()))

134 if (oaaa.getProperty ().getIRI ().getShortForm ()

135 .equals("label")) {

136 String oaaastr = oaaa.getValue ().toString ();

137 int langat = oaaastr.lastIndexOf("@");

138 int typestr = oaaastr.lastIndexOf("^^xsd");

139 oaaastr = (langat > -1) ? oaaastr.substring(0, langat)

140 : oaaastr;

141 oaaastr = (typestr > -1 && typestr > langat && typestr

142 <= oaaastr.length ()) ?

143 oaaastr.substring(0, typestr) : oaaastr;

144 iriLabelMap.put(p.getIRI ().getShortForm (),

145 oaaastr.toLowerCase ());

146 }

147 }

148

149 }

150 }

5.6 Edge List Inputs

Three ontologies are used in the Main class to demo; LaptopCorrect, Laptop Close, and
LaptopFar. These are three edge list text files that represented each ontology and differ
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only in the parent of the term Laptop.
LaptopCorrect:

1 Entity Continuant

2 Entity Occurrent

3 Continuant IndependentContinuant

4 Continuant SpecificallyDependentContinuant

5 Continuant GenericallyDependentContinuant

6 IndependentContinuant MaterialEntity

7 IndependentContinuant ImmaterialEntity

8 MaterialEntity Object

9 MaterialEntity FiatObjectPart

10 MaterialEntity ObjectAggregate

11 ImmaterialEntity Site

12 ImmaterialEntity ContinuantFiatBoundary

13 ImmaterialEntity SpatialRegion

14 SpatialRegion OneDimensionalSpatialRegion

15 SpatialRegion ThreeDimensionalSpatialRegion

16 SpatialRegion TwoDimensionalSpatialRegion

17 SpatialRegion ZeroDimensionalSpatialRegion

18 ContinuantFiatBoundary OneDimensionalFiatBoundary

19 ContinuantFiatBoundary TwoDimensionalFiatBoundary

20 ContinuantFiatBoundary ThreeDimensionalFiatBoundary

21 ContinuantFiatBoundary ZeroDimensionalFiatBoundary

22 SpecificallyDependentContinuant Quality

23 SpecificallyDependentContinuant RealizableEntity

24 SpecificallyDependentContinuant Role

25 SpecificallyDependentContinuant Function

26 SpecificallyDependentContinuant Disposition

27 RealizableEntity Role

28 RealizableEntity Disposition

29 Disposition Function

30 Occurrent Process

31 Occurrent ProcessBoundary

32 Occurrent TemporalRegion

33 Occurrent SpatiotemporalRegion

34 Process History

35 Process ProcessProfile

36 TemporalRegion ZeroDimensionalTemporalRegion

37 TemporalRegion OneDimensionalTemporalRegion

38 Object Laptop

LaptopClose:

1 Entity Continuant

2 Entity Occurrent

3 Continuant IndependentContinuant

4 Continuant SpecificallyDependentContinuant

5 Continuant GenericallyDependentContinuant

6 IndependentContinuant MaterialEntity

7 IndependentContinuant ImmaterialEntity

8 MaterialEntity Object

9 MaterialEntity FiatObjectPart

10 MaterialEntity ObjectAggregate

11 ImmaterialEntity Site
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12 ImmaterialEntity ContinuantFiatBoundary

13 ImmaterialEntity SpatialRegion

14 SpatialRegion OneDimensionalSpatialRegion

15 SpatialRegion ThreeDimensionalSpatialRegion

16 SpatialRegion TwoDimensionalSpatialRegion

17 SpatialRegion ZeroDimensionalSpatialRegion

18 ContinuantFiatBoundary OneDimensionalFiatBoundary

19 ContinuantFiatBoundary TwoDimensionalFiatBoundary

20 ContinuantFiatBoundary ThreeDimensionalFiatBoundary

21 ContinuantFiatBoundary ZeroDimensionalFiatBoundary

22 SpecificallyDependentContinuant Quality

23 SpecificallyDependentContinuant RealizableEntity

24 SpecificallyDependentContinuant Role

25 SpecificallyDependentContinuant Function

26 SpecificallyDependentContinuant Disposition

27 RealizableEntity Role

28 RealizableEntity Disposition

29 Disposition Function

30 Occurrent Process

31 Occurrent ProcessBoundary

32 Occurrent TemporalRegion

33 Occurrent SpatiotemporalRegion

34 Process History

35 Process ProcessProfile

36 TemporalRegion ZeroDimensionalTemporalRegion

37 TemporalRegion OneDimensionalTemporalRegion

38 ObjectAggregate Laptop

LaptopFar:

1 Entity Continuant

2 Entity Occurrent

3 Continuant IndependentContinuant

4 Continuant SpecificallyDependentContinuant

5 Continuant GenericallyDependentContinuant

6 IndependentContinuant MaterialEntity

7 IndependentContinuant ImmaterialEntity

8 MaterialEntity Object

9 MaterialEntity FiatObjectPart

10 MaterialEntity ObjectAggregate

11 ImmaterialEntity Site

12 ImmaterialEntity ContinuantFiatBoundary

13 ImmaterialEntity SpatialRegion

14 SpatialRegion OneDimensionalSpatialRegion

15 SpatialRegion ThreeDimensionalSpatialRegion

16 SpatialRegion TwoDimensionalSpatialRegion

17 SpatialRegion ZeroDimensionalSpatialRegion

18 ContinuantFiatBoundary OneDimensionalFiatBoundary

19 ContinuantFiatBoundary TwoDimensionalFiatBoundary

20 ContinuantFiatBoundary ThreeDimensionalFiatBoundary

21 ContinuantFiatBoundary ZeroDimensionalFiatBoundary

22 SpecificallyDependentContinuant Quality

23 SpecificallyDependentContinuant RealizableEntity

24 SpecificallyDependentContinuant Role

25 SpecificallyDependentContinuant Function
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26 SpecificallyDependentContinuant Disposition

27 RealizableEntity Role

28 RealizableEntity Disposition

29 Disposition Function

30 Occurrent Process

31 Occurrent ProcessBoundary

32 Occurrent TemporalRegion

33 Occurrent SpatiotemporalRegion

34 Process History

35 Process ProcessProfile

36 TemporalRegion ZeroDimensionalTemporalRegion

37 TemporalRegion OneDimensionalTemporalRegion

38 ImmaterialEntity Laptop
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