CSC 344 Third Racket Programming Assignment Solution

Learning Abstract: This programming assignment features several properties and
abilities of the Lisp programming language as displayed in the Racket
environment. These include simple capabilities like quote, atom, and define, as
well as the more complex functions of list processing. Not only were these
functions demonstrated on their own, but they were also then used all together to
create some interesting programs at the end.

First Task: Historical Lisp

Parroting Racket interactions and definitions from “Lesson 7: Historical Lisp”.

|
> Quote and Eval

Interactions - Constants 9 and “‘red’ and ’red

b
> "red"
> 'rec

Interactions - Variants of the quote special form

> (gquote red

> 'red

Interactions - Illustrating the “unbound variable” error
> red



Interactions - Examples of standard form evaluation

> (+ 3 4

> (+(/ 3 1)(* 2 2

> (+1 2 3 45¢€ 78 9 1
> (/(* 10(+ 10 1))2

Interactions - Illustrating the “unbound function” error
red yellow blue

% %

> Car, Cdr, and Cons

Interactions - Examples of the car function

> (car ' (apple peach cherry

> (car ' ((lisp 1959) (prolog 1971) (haskell 1950
Interactions - Examples of the cdr function

> (cdr ' (apple peach cherry

> (cdr '((lisp 1959) (prolog 1971) (haskell 1980
Interactions - Examples of the cons function

> (cons 'apple ' (peach cherry

> (cons '(lisp 1959) '((prolog 1971) (haskell 1550



> Eq and Atom

Interactions - Examples of the eq? function
> (eg? 'a 'b

Interactions - Examples of the atom? function

> (define (atom? %) (not (or (pair? x) (null? x
> (atom? 'a

> (atom? '"(a b c
> (atom? 4

> (atom? '"(a . b

> Lambda

Interactions - Interactions featuring lambda function application
> lambda (x)(* x x))5

> lambda (%) (* x x))9
b lambda (x y) (cons X(cons X(cons yl(cons y ' 12
> lambda (x y) (cons x(cons x(cons y(cons y ' 'hey 'now
> lambda (a b ¢
define s(/(+ a b c)2.0
* 5(- s ajl-sb)i-s5cC



> Define

Definitions - Defining four items, two variables and two functions

#lang racket
define lisp-born 1959

define favorite-pies ' (cherry peach apple

define sqguare (lambda (x) (* X x

define seeing-double

lambda (x y) (cons x(cons x(cons

Interactions - Referencing the two variables and applying the two functions

> lisp-born

> favorite-pies

> [(square 5

> (square 11

> [(seeing-double 'meow 'woof

> 5

41

eing-double 'oh 'no

Definitions - Redefining the two functions (do it in a fresh pane)

#lang racket
define (square x) (* ®x X

define (seeing-double x vy
cons X(cons x(cons y(cons y



Interactions - Illustrating the application of these functions (even though this was
not explicitly indicated in the lesson)
> (square 2

> (sguare 5
> (seeing-double 'one 'two

> (seeing-double 'up 'down

Definitions - Defining the area-of-circle function

#lang racket
define (area-of-circle diamester
define radius (/ diameter 2
define radius-squared (sqguare radius
define the-area (* pli radius-sguared
the-area

Interactions - Testing the area-of-circle function
> (area-of-circle 20



> Cond

Definitions - Defining the rgb, determine, and got-milk? functions

#lang racket
define (rgb color-name
cond
eq? color-name 'red
! 55 0 0

color-name 'green
{0 255 0

eq? color-name 'blue
0 0 255

eq? color-name 'purple
'(10¢6 13 173

eq? color-name 'yellow

'({255 255 0

else
'"unknown-color—-name

define (determine operator operand
cond
eq? operator 'difference
define maximum (max(car operand) (cadr operand) (caddr operand
define minimum (min(car operand) (cadr operand) (caddr operand
- haximum minimum

eq? operator 'average
define sum (+(car operand) (cadr operand) (caddr operand
/ sum (length operand

define (got-milk? list
cond
null? list)#f

eq? 'milk (car list))#t
else (got-milk? (cdr list



Interactions - Mimicking the demo illustrating application of the three functions
> (rgh 'blue

> (rgh 'yellow
> (rgh 'purple

> (rgb 'orange

> (determine 'difference '(11 100 55
> (determine 'difference '(5 20 -1

> (determine 'average '(1 2 &

> (determine 'average '(% 5 22

> (got-milk? ' (coffee
> (got-milk? ' (coffee with cream

> (got-milk? ' (coffee with milk

" " " |
Second Task: Referencers and Constructors

Parroting Racket interactions and definitions from “Lesson 8: Basic List
Processing” that pertain expressly to referencers and constructors.



> Racket Session Featuring CAR, CDR, and CONS

Interactions - Applying CAR, CDR and CONS

> (car '(red green blue
> (cdr ' (red green blue
> (car '((1 3 5) seven nine
> (cdr '((1 3 5) seven nine
> (car ' ("Desde El1 Alma"

> (cdr " ("Desde E1 Elma"

> (cons 'ESPRESSO ' (LATTE CAPPUCCINOC

L

> (cons '"labc "(1 2

> (cons 'SYMBOL '

______________________________________________________________________________________________]
> Referencing a list element

Interactions - Referencing a list element from scratch

> (define animals ' (ant bat cat dog eel

> (define questions ' (who what when where why
> animals

> guestions

> (car(cdr(cdr(cdr animals



Interactions - Referencing a list element from using list-ref

> (define animals ant bat « i
> (define guestions ' (who wh
> animals

J

at dog ee
t when where why

(]

AT}

=1

» (list-ref animals 3

> (list-ref guestions 3

> Creating a list

Interactions - Creating a list from scratch
> (define a (random 10

> (define b (random 10

> (define ¢ (random 10

> (cons alcons bicons c !

Interactions - Creating a list using list
> (define a (random 10

» (define b (random 10

> (define ¢ (random 10

> (list a b ¢



> Appending one list to another list

Interactions - Appending two lists from scratch
> (define x ' (one fish

> (define y '(two fish

> X

> ¥

> (cons (car X) (cons(car (cdr =))y
Interactions - Appending two lists using append
> (define x '(one fish

> (define y '(two fish
> X

> ¥

> (append X ¥y



. ____________________________________________________________________________________________________|
> Redacted Racket Session Featuring Referencers and Constructors

Interactions - Mindfully doing the redacted session, for real

> (define languages ' (racket prolog haskell rust

> langua

n

==

L]

> 'language

4y}

> (guote languages

> (second languages

> (third languages



> (define numbers '(1 2 3))

» [(define letters '(a b <))

> (cons numbers letters)

'((1 2 3) a b )

> (append numbers letters)

{1 2 3 abc

> (define animals ' (ant bat cat dog eesl))
» (car (edr (ecdr (cdr animals))))

"dog

» (cadddr animals)

"dog

» (list-ref animals 3)

"dog

> (define a 'apple)

> (define b 'peach)

> (define ¢ 'cherry)

> (cons alcons bicons c "())))
1

(apple peach cherry)

> (list a b c)

'"(apple peach cherry)

» (define x '(one fish))

> (define vy ' (two fish))

> (cons (car ) (cons (car (cdr x))y))
'"{one fish two fish)

> (append x V)

'"{one fish two fish)



|
Third Task: Random Selection

The simple little program presented selects an element at random from a given list.
The list is provided by means of the read function, which will read any
S-expression, including a list.

Definitions - Defining the sampler program

#lang racket
define (sampler
display " (2):
define the-list (read
define the-eslement
list-ref the-1list (random (length the-list

L]

mn

display the-element) (display "\n
sampler



Interactions - Mimicking the sampler program demo

> (sampler

. (red orange yellow green blue

- red

(ast
(ast
(ast

(ast

orange

orange

orange

orange

orange yellow green blue

yellow
yellow
yellow

yellow

ate =at eta

ate

ate

ate

ate

ate

eat

eat

eat

eat

eat

(01 2 345

. .userbreak

eta

eta

eta

eta

eta

(a3}
=]

(a3}
=]

(a3}
=]

(a3}
=]

(a3}
=]

(a3}
=]

tae

tae

tae

tae

tae

tae

green blue
green blue
green blue

green blue

tea)

tea)

tea)

tea)

tea)

tea)

indigo
indigo
indigo
indigo
indigo

indigo

violet)
violet)
violet)
violet)
violet)

violet)



Fourth Task: Playing Card Programming Language

The code and demo for the playing card programming challenge presented at the
end of Lesson 8 is presented here.

Definitions - Programming the card playing functionality

#lang racket
define (ranks rank

list rank 'C
list rank 'D
list rank 'H
list rank 'S

define (deck
append
ranks
ranks
ranks
ranks
ranks
ranks
ranks
ranks
ranks
ranks '
ranks
ranks 'K
ranks 'R

S B T Y S W L

= 0O

define (pick-a-card cards
list-ref cards (random (length cards



(define (show card)
(display (rank card))
(display (suit card))

(define (rank card)
(car card)

(define (suit card)
(cadr card)

(define (red? card)
(or
(equal? (suit card) 'D)
(equal? (suit card) 'H)

(define (black? card)
(not (red? card))

(define (aces? cardl card2)
(and
(equal? (rank cardl) '&)
(equal? (rank card2) 'A)



Interactions - Mimicking the card playing functionality demo
> (define cl '"(7 C))

> (define c2 '"(Q H))

> cl

(7 )

> c2

'(Q H)

> (rank cl)
> (sult cl)
> (rank c2)
> (sult c2)

> (red? cl)

> (red? c2)

> (black? cl)

#t

> (black? c2)

#f

> (aces? '"(BA C) '"(A 5))
#t

> (aces? "(K 5) '"(RA C))
#f

> (ranks 4)

"((4 C) (4 D) (4 H (4 5))
> (ranks 'K)

'"((K C) (K D) (KH (KS5))
> (length (deck))

52

> (display (deck))

((2 C)y (2 D) (2 H) (2 8) (3 C)y (3 D) (3 H) (3 3) (40C) (
(4 H) (4 8) (5C) (5D (5 H) (558) (6 C) (6D (6 H (6
(7 C)y (7 D) (7 H) (7 85) (8 C) (8 D) (8 H) (8 5) (2 C) (9
(9 H) (9 35) (XC) (XD) (X H) (X83) (TJC) (JD) (JH) (J
(@ C) (D) (@QH (@5) (KC) (KD} (KH (KS3) (AC) (B
(& H) (& 3))

> (pick-a-card (deck))

'(K )

> (pick-a-card (deck))

(T 3)

> (pick-a-card (deck))

(3 3)

> (pick-a-card (deck))
"(J H)
> (pick-a-card (deck))
(4 5)
> (pick-a-card (deck))
"(Q H)

=== <g

L I T s R #5



