Prolog Programming Assignment #2: A Favorite Pokemon KB plus
Simple List Processing Exercises

What’s It All About?

Programming exercises that (1) focus on querying and extending a Prolog knowledge base about Pokemon, and (2)
afford you an opportunity to engage in som Prolog list processing.

Overall Charge

Generate a solution template document that is consistent with the accompanying solution template. Then, please
do each of the Prolog tasks, adding source code and demos to your template in the appropriate manner.

Due Date

Please complete your work on this assignment, and post your work to your web work site, no later than Sunday,
April 16th, 2023.

Task 1: Pokemon KB Interaction and Programming

724



Part 1: The Initial Pokemon KB

For this task, please incorporate, into your computational world, the knowledge base on pokemon trading cards that
I am providing as a sibling document to the one that you are now reading. The code works for me, so if it doesn’t
work for you, that is probably because of an “error in transmission” that you will need to sort out.

Once the KB loads, simply copy it into the appropriate part of your solution document.

Part 2: Queries

Please engage in a Prolog interaction to duplicate what I did in rendering the accompanying demo — before I replaced
my queries with “query stubs”. In other words, you are to recreate the demo by providing the 20 queries that I
redacted. The following “20 questions” indicate what you need to focus on for each query:

® N o oE W N

10.
11.
12.

13.
14.
15.
16.
17.
18.

19.

20.

Query 1: Is picachu a “creatio ex nihilo” (created out of nothing) pokemon?

Query 2: Is raichu a “creatio ex nihilo” pokemon?

Query 3: By means of hand intervention, list all of the “creatio ex nihilo” pokemon.

Query 4: By means of the standard idiom of repetition, list all of the “creatio ex nihilo” pokemon.
Query 5: Does squirtle evolve into wartortle?

Query 6: Does wartortle evolve into squirtle?

Query 7: Does squirtle evolve into blastoise?

Query 8: By means of hand intervention, list all triples of pokemon such that the first evolves into the second
and the second evolves into the third.

Query 9: By means of the standard idiom of repetition, list all pairs of pokemon such that the first evolves
through an intermediary to the second - placing an arrow between each pair.

Query 10: By means of the standard idiom of repetition, list the names of all of the pokemon.
Query 11: By means of the standard idiom of repetition, list the names of all of the fire pokemon.

Query 12: By means of the standard idiom of repetition, provide a summary of each pokemon and its kind,
representing each pairing of name and kind in the manner suggested by the redacted demo.

Query 13: What is the name of the pokemon with the waterfall attack?

Query 14: What is the name of the pokemon with the poison-powder attack?

Query 15: By means of the standard idiom of repetition, list the names of the attacks of all of the water pokemon.
Query 16: How much damage (hp count) can poliwhirl absorb?

Query 17: How much damage (hp count) can butterfree absorb?

Query 18: By means of the standard idiom of repetition, list the names of all of the pokemon that can absorb
more than 85 units of damage.

Query 19: By means of the standard idiom of repetition, list the names of all of the pokemon that can dish
out more than 60 units of damage with one instance of their attack.

Query 20: By means of the standard idiom of repetition, list the names and the hit point value for each of the
“creation ex nihilo” pokemon, with the results formatted as the redacted demo suggests.



bash-3.2$ swipl
<<redacted>>

?- consult (’pokemon_plus.pro’).
% pokemon.pro compiled 0.00 sec, 54 clauses
true.

?7- <<Query 1>>
true.

?7- <<Query 2>>
false.

?7- <<Query 3>>
Name = pikachu ;
Name = bulbasaur ;
Name = caterpie ;
Name = charmander ;
Name = vulpix ;
Name = poliwag ;
Name = squirtle ;
Name = staryu.

?7- <<Query 4>>
pikachu
bulbasaur
caterpie
charmander
vulpix
poliwag
squirtle
staryu

false.

?7- <<Query 5>>
true.

?7- <<Query 6>>
false.

?7- <<Query 7>>
false.

?7- <<Query 8>>
bulbasaur,

= ivysaur,

= venusaur ;

= caterpie,

= metapod,

= butterfree ;

N < X N < >
|



= charmander,
= charmeleon,
= charizard ;
= poliwag,
poliwhirl,
= poliwrath ;
= squirtle,

= wartortle,
= blastoise ;
false.

N < XM N~ M N < X
I

?- <<Query 9>>

bulbasaur --> venusaur
caterpie --> butterfree
charmander --> charizard
poliwag --> poliwrath
squirtle --> blastoise
false.

?7- <<LQuery 10>>
pikachu
raichu
bulbasaur
ivysaur
venusaur
caterpie
metapod
butterfree
charmander
charmeleon
charizard
vulpix
ninetails
poliwag
poliwhirl
polywrath
squirtle
wartortle
blastoise
staryu
starmie
false.

?7- <<Query 11>>
charmander
charmeleon
charizard
vulpix
ninetails
false.

?7- <<LQuery 12>>
nks (name (pikachu) ,kind(electric))
nks (name (raichu) ,kind(electric))



nks (name (bulbasaur) ,kind (grass))
nks (name (ivysaur) ,kind(grass))
nks (name (venusaur) ,kind(grass))
nks (name (caterpie) ,kind(grass))
nks (name (metapod) ,kind (grass))
nks (name (butterfree) ,kind(grass))
nks (name (charmander) ,kind(fire))
nks (name (charmeleon) ,kind(fire))
nks (name (charizard) ,kind (fire))
nks (name (vulpix) ,kind(fire))

nks (name(ninetails) ,kind(fire))
nks (name (poliwag) ,kind(water))
nks (name (poliwhirl) ,kind(water))
nks (name (polywrath) ,kind (water))
nks (name (squirtle) ,kind(water))
nks (name (wartortle) ,kind (water))
nks (name (blastoise) ,kind (water))
nks (name (staryu) ,kind (water))
nks (name (starmie) ,kind(water))
false.

?7- <<Query 13>>
N = wartortle

?7- <<Query 14>>
N = venusaur

?- <<Query 15>>
water-gun
amnesia
dashing-punch
bubble
waterfall
hydro-pump
slap
star-freeze
false.

?7- <<Query 16>>
HP = 80

?- <<Query 17>>
HP = 130

?- <<Query 18>>
raichu
venusaur
butterfree
charizard
ninetails
polywrath
blastoise
false.



?7- <<Query 19>>
raichu
venusaur
butterfree
charizard
ninetails
false.

?7- <<LQuery 20>>
pikachu: 60
bulbasaur: 40
caterpie: 50
charmander: 50

vulpix: 60
poliwag: 60
squirtle: 40
staryu: 40
false.

Part 3: Programs

Please extend the pokemon knowledge base in your pokemon. pro file by adding the programs (rules) specified below,
consulting the accompanying demo for clarification, as needed. Note: You should probably proceed by adding
one predicate at a time, being sure to test/demo that predicate before moving on to do the next one.

1. Define a parameterless predicate called display_cen to display the names of all of the “creatio ex nihilo”
pokemon.

2. Define a parameterless predicate called display not_cen to display the names of all of the pokemon who are
not “creatio ex nihilo” pokemon.

3. Define a predicate called generator taking two parameters, the name of a pokemon and the type of a pokemon,
which returns true if the pokemon is of the given type.

4. Define the parameterless predicate called display names to list the names of all of the pokemon represented
in the KB.

5. Define the parameterless predicate called display._attacks to list the names of all of the attacks that the
pokemon represented in the KB can unleash.

6. Define the parameterless predicate called display_cen_attacks to list the names of all of the attacks that just
the creation ex nihilo pokemon represented in the KB can unleash.

7. Define a predicate called indicate_attack taking one parameter, the name of a pokemon, which displays, for
the named pokemon, a short text of the form: NAME —> ATTACK.

8. Define a parameterless predicate called indicate_attacks which displays a short text of the form NAME —>
ATTACK for each pokemon in the KB, one short text per line.

9. Define a predicate called powerful taking one parameter, the name of a pokemon, which succeeds only if the
attack associated with the named pokemon yields with more than 55 units of damage.

10. Define a predicate called tough taking one parameter, the name of a pokemon, which succeeds only if the the
named pokemon can absorb at least 100 units of damage (that is, has an hp count that is more than 100).

11. Define a predicate called awesome taking one parameter, the name of a pokemon, which succeeds only if the
the named pokemon is both powerful and tough.



12.

13.

14.

15.

16.

17.

Define a predicate called powerful but_not_vulnerable taking one parameter, the name of a pokemon, which
succeeds only if the the named pokemon is powerful and not tough.

Define a predicate called type taking two parameters, the name of a pokemon, and the type of a pokemon,
which succeeds only if the the named pokemon is of the specified type.

Define a predicate called dump kind taking one parameter, the kind of a pokemon, which displays complete
information for all of the pokemon in the KB of the specified kind, doing so in a manner that is consistent with
the representation of the pokemon in the KB.

Define a predicate called family taking one parameter, presumed to be a “creatio ex nihilo” pokemon, which
displays the “evolutionary family” of the specified pokemon, all on a given line, as illustrated in the demo.

Define a parameterless predicate called families to display all of the evolutionary pokemon families, repre-
senting the families in the manner illustrated in the demo.

Define a predicate called 1ineage taking one parameter, the name of a pokemon, which displays all of the
information for the pokemon and for each subsesquent pokemon in the evolutionary lineage of the pokemon.
(Please see the demo to assure that you are properly understanding what this program is supposed to do.)

bash-3.2$ swipl
<<redacted>>

?- consult(’pokemon_plus.pro’).
% pokemon_plus.pro compiled 0.00 sec, 69 clauses

true.

?- display_cen_names.
pikachu

bulbasaur

caterpie

charmander

vulpix

poliwag

squirtle

staryu

true.

?- display_not_cen_names.
raichu
ivysaur
venusaur
metapod
butterfree
charmeleon
charizard
ninetails
poliwhirl
poliwrath
wartortle
blastoise
starmie

true.

?- generator(Name,fire).



Name = charmander ;
Name = vulpix ;
false.

?- generator (Name,water) .
Name = poliwag ;

Name = squirtle ;
Name = staryu ;
false.

?7- generator(Name,electric).
Name = pikachu ;
false.

?- generator (Name,grass) .
Name = bulbasaur ;

Name = caterpie ;

false.

?- display_names.
pikachu
raichu
bulbasaur
ivysaur
venusaur
caterpie
metapod
butterfree
charmander
charmeleon
charizard
vulpix
ninetails
poliwag
poliwhirl
poliwrath
squirtle
wartortle
blastoise
staryu
starmie
true.

?- display_attacks.
gnaw
thunder-shock
leech-seed
vine-whip
poison-powder
gnaw
stun-spore
whirlwind
scratch

slash



royal-blaze
confuse-ray
fire-blast
water-gun
amnesia
dashing-punch
bubble
waterfall
hydro-pump
slap
star-freeze
true.

?- display_cen_attacks.
gnaw

leech-seed

gnaw

scratch

confuse-ray

water-gun

bubble

slap

true.

?7- indicate_attack(charmander) .
charmander --> scratch
true

?- indicate_attack(bulbasaur) .
bulbasaur --> leech-seed
true

?- indicate_attacks.
pikachu --> gnaw

raichu --> thunder-shock
bulbasaur --> leech-seed
ivysaur --> vine-whip
venusaur —-—> poison-powder
caterpie --> gnaw
metapod —--> stun-spore
butterfree --> whirlwind
charmander --> scratch
charmeleon --> slash
charizard --> royal-blaze
vulpix --> confuse-ray
ninetails --> fire-blast
poliwag --> water-gun
poliwhirl --> amnesia
poliwrath --> dashing-punch
squirtle --> bubble
wartortle —-> waterfall
blastoise —--> hydro-pump
staryu —-> slap

starmie --> star-freeze



true.

?7- powerful (Name) .
Name = raichu ;
Name = venusaur ;
Name = butterfree ;
Name = charizard ;
Name = ninetails ;
Name = wartortle ;
Name = blastoise ;
false.

?7- tough(Name) .
Name = venusaur ;
Name = butterfree ;

Name = charizard ;
Name = poliwrath ;
Name = blastoise ;
false.

?7- awesome (Name) .
Name = venusaur ;

Name = butterfree ;
Name = charizard ;
Name = blastoise ;
false.

?- powerful_but_vulnerable(Name) .
Name = raichu ;

Name = ninetails ;

Name wartortle ;

false.

?7- type(squirtle,Type).
Type = water

?7- type(caterpie,Type).
Type = grass

?7- type(Name,fire) ,write(Name),nl,fail.
charmander

charmeleon

charizard

vulpix

ninetails

false.

?- dump_kind(water) .

pokemon (name (poliwag) ,water ,hp(60) ,attack(water-gun,30))
pokemon (name (poliwhirl) ,water,hp(80) ,attack(amnesia,30))
pokemon (name (poliwrath) ,water,hp(140),attack(dashing-punch,50))
pokemon (name (squirtle) ,water,hp(40) ,attack(bubble,10))

pokemon (name (wartortle) ,water,hp(80) ,attack(waterfall,60))



pokemon (name (blastoise) ,water,hp(140) ,attack (hydro-pump,60))
pokemon (name (staryu) ,water,hp(40) ,attack(slap,20))

pokemon (name (starmie) ,water,hp(60) ,attack(star-freeze,20))
true.

?- dump_kind(grass).

pokemon (name (bulbasaur) ,grass,hp(40) ,attack(leech-seed,20))
pokemon (name (ivysaur) ,grass,hp(60) ,attack(vine-whip,30))
pokemon (name (venusaur) ,grass,hp(140) ,attack (poison-powder,70))
pokemon (name (caterpie) ,grass,hp(50) ,attack(gnaw,20))

pokemon (name (metapod) ,grass,hp(70) ,attack(stun-spore,20))
pokemon (name (butterfree) ,grass,hp(130) ,attack(whirlwind,80))
true.

?7- family(pikachu) .
pikachu raichu
true

?7- family(bulbasaur).
bulbasaur ivysaur venusaur
true.

?- family(caterpie) .
caterpie metapod butterfree
true.

?- families.

pikachu raichu

bulbasaur ivysaur venusaur
caterpie metapod butterfree
charmander charmeleon charizard
vulpix ninetails

poliwag poliwhirl poliwrath
squirtle wartortle blastoise
staryu starmie

true.

?7- lineage(pikachu).

pokemon (name (pikachu) ,electric,hp(60),attack(gnaw,10))

pokemon (name (raichu) ,electric,hp(90) ,attack (thunder-shock,90))
true

?- lineage(squirtle).

pokemon (name (squirtle) ,water,hp(40) ,attack(bubble, 10))
pokemon (name (wartortle) ,water,hp(80) ,attack(waterfall,60))
pokemon (name (blastoise) ,water,hp(140) ,attack(hydro-pump,60))
true

?7- lineage(wartortle).

pokemon (name (wartortle) ,water,hp(80) ,attack(waterfall,60))
pokemon (name (blastoise) ,water,hp(140) ,attack (hydro-pump,60))
true

?7- lineage(blastoise).



pokemon (name (blastoise) ,water,hp(140) ,attack (hydro-pump,60))
true.

?- lineage(charmander) .

pokemon (name (charmander) ,fire,hp(50) ,attack(scratch,10))
pokemon (name (charmeleon) ,fire,hp(80) ,attack(slash,50))
pokemon (name (charizard) ,fire,hp(170) ,attack(royal-blaze,100))
true

Part 4: Demo

Create a demo which mimics that provided in the previous part of this task, the demo which was provided to help
inform you about what the various Prolog predicates do.

Part 5: Add 12 More Pokemon to the KB

Add 12 additional pokemon to the KB, all from the four types present in the KB, and at least two from each of the
four types.

Part 6: Demo

Create a demo which, once again, mimics that provided in the thrid task, after loading the KB augmented with your
12 pokemon.

Presentational Notes for Task 1

Place the following items within the “Task 1: Pokemon KB Interactions and Programming” section of your presen-
tation document:

The given Pokemon KB (the pokemon.pro file) for Part 1 of this task.
The demo for Part 2 of this task.
The Extended knowledge base (the pokemon.pro file) for Part 3 of this task.

Ll

Your very own Part 4 demo, which mimics the demo that I presented in the Part 3 task, thus assuring that
your predicate definions are soundly written.

The Extended knowledge base (the pokemon.pro file) for Part 5 of this task.

ot

6. Your very own Part 6 demo, which mimics the demo that I presented in the Part 3 task, but which operates
upon the KB with your 12 pokemon added.



Task 2: List Processing in Prolog

1. Do what is asked in the “Head/Tail Referencing Exercises” section that is presented in Lesson 5 on list pro-
cessing in Prolog.

2. Establish a file called 1list_processors.pro in which to place some list processing functions. Then, add to it
definitions of the functions appearing in the “Example List Processors” section of Lesson 5. Then, mimic the
demo associated with the example list processor functions presented in Lesson 5, being sure to save the demo
for inclusion in your presentation document.

3. Please do what is asked in the “List Processing Exercises” section of Lesson 5, which involves defining some
functions and performing a demo.

Presentational Notes for Task 2

Place the following items within the “Task 2: List Processing in Prolog” section of your presentation document:

1. Your demo corresponding to the “Head/Tail Referencing Exercises”.

2. The Prolog file containing all of the list processing function definitions that you were asked to write, those
associated with the “Example List Processors” section from Lesson 5, and those associated with the “List
Processing Exercises” from Lesson 5.

3. The demo associated with the “Example List Processors” that is provided in Lesson 5.

4. The demo that you are asked to create in the “List Processing Exercises” section of Lesson 5.



