
Csc344 Problem Set: Memory Management / Perspectives on Rust:

Cameron Francois
May 12th, 2023
CSC 344

Task 1 - The Runtime Stack and the Heap:

Stack and Heap are crucial components that programmers should take the time
to gain the proper knowledge on. Especially when writing in languages like C, C++, and
programmers who have been around with java could gain more insight on how memory
management is functioning. In the next two paragraphs we will go more in depth on
Stack and Heap, this will give more insight on both of them. Overall, both of these are
important to know for programmers and will only expand their knowledge as a computer
scientist.

Stack is a component or concept that is generally used for a program's memory
management and stack includes sections called stack frames. Those stack frames are
created before the function is performed and will be deleted once the function execution
is completed. Basically it follows the rule of fulfilling the requirement of giving space for
the function to perform. Like most things before we are able to remove or delete the
next stack frame we must remove the top stack before the next one. A lot of the stack
function will automatically perform rather than having the programmer define otherwise.

Heap is also a component or concept that is generally used for a program’s
memory management. Although, there are key differences in Heap comparing it with
stack. Heap specializes when a programmer wants to keep data or just pass the data
along from function to function. This will obviously depend on what language is being
used but when keeping data it will need to find/allocate space for this data. SOme
differences is Stack generally has various sections of memory while Heap does not
need to do this and also does not one of the crucial ones is the first in last out rule
followed by Stack.



Task 2 - Explicit Memory Allocation/Deallocation vs Garbage Collection:

For a programmer there's key concepts that can be really useful for whatever
language the programmer is using. Having deeper understanding only furthers the
proper information needed when faced with various decisions in the program. Within the
next two paragraphs we will discuss explicit memory allocation and deallocation versus
garbage collection. Both of these topics are crucial for programmers to fully grasp and
both could prove beneficial to have this knowledge depending on the language that is
being used. So both of these will be discussed to more of an understanding that could
provide more insight.

Memory management focuses on the process of both explicit allocation and
deallocation of the memory in which to store the data. This of course helps to run any
program and this will vary on the language that is being used in some cases how it
functions. In some cases like C++ the programmer will need to be a little more proactive
with the management of the program by using functions like New() and Delete() which is
also similar in C which uses Calloc() and Malloc() both to help allocate memory. There
are also methods to deallocate memory like free(). The benefit of the programmer being
more of an active role will help how the program functions and even can run on
hardware limited systems. But despite some of the positives of explicit memory
management it's worth mentioning that it does have some downfalls like anything else.
One of the main issues is it could be hard to follow or tough to set up and there could
also be memory leaks without a proper system that could get messy.

Although with garbage collection the programmer will be disconnected from the
memory management system. So as we somewhat discussed in the previous task,
garbage collection will allocate memory once the program starts running and will also
reallocate. It does this when the data is being used the memory will be allocated and
once it stops then it will then reallocate. This is a lot better for a programmer in the
sense that it is more convenient but it's generally a slow function compared to the
explicit memory management. Overall, a programmer could prefer this due to the low
effort needed from them but as mentioned above its not necessarily the ideal process.



Task 3 - Rust: Memory Management:

1. The suggestion was that Rust allows more control over memory usage, like C++. In C++,
we explicitly allocate memory on the heap with new and deallocate it with delete. In
Rust, we do allocate memory and deallocate memory at specific points in our program.
Thus it doesn't have garbage collection, as Haskell does.

2. In this part, we'll discuss the notion of ownership. This is the main concept governing
Rust's memory model. Heap memory always has one owner, and once that owner goes
out of scope, the memory gets deallocated.

3. When that block of code ends, the variable is out of scope. We can no longer access it.
Rust works the same way. When we declare a variable within a block, we cannot access
it after the block ends.

4. What's cool is that once our string does go out of scope, Rust handles cleaning up the
heap memory for it! We don't need to call delete as we would in C++. We define memory
cleanup for an object by declaring the drop function.

5. Deep copies are often much more expensive than the programmer intends. So a
performance-oriented language like Rust avoids using deep copying by default. But let's
think about what will happen if the example above is a simple shallow copy. When s1
and s2 go out of scope, Rust will call drop on both of them. And they will free the same
memory!

6. In Rust, here's what would happen with the above code. Using let s2 = s1 will do a
shallow copy. So s2 will point to the same heap memory. But at the same time, it will
invalidate the s1 variable. Thus when we try to push values to s1, we'll be using an
invalid reference.

7. Memory can only have one owner. This is the main idea to get familiar with.

8. In general, passing variables to a function gives up ownership. In this example, after
we pass s1 over to add_to_len, we can no longer use it.

9. Like in C++, we can pass a variable by reference. We use the ampersand operator (&)
for this. It allows another function to "borrow" ownership, rather than "taking" ownership.
When it's done, the original reference will still be valid.

10. This works like a const reference in C++. If you want a mutable reference, you can do
this as well. The original variable must be mutable, and then you specify mut in the type
signature.



Task 4 - Paper Review: Secure PL Adoption and Rust:

So languages like Rust and Go were initially developed to fight against the
crucial memory safety-related weak points. While it's important knowing that getting
secure software development is a tough task with weak points in code generally on a
daily basis. Back to Rust and Go being created these were helpful to negate the burden
or hassle the lower end developers had to deal with regarding developing safe and
impactful code. Since memory weak points are so critical, most would invest in helping
convert a language like Rust into a helpful language dealing with these weak points
despite the expensive price tag that comes along with it.

Some background knowledge of Rust is it was created by Mozilla in 2014 with its
first proper release. It is an open-source system programming language that's goal is to
help developers create secure applications and prevent the typical faults you might see.
Most of the languages that promote safe typing often use a garbage collection, although
with Rust it has a strict ownership with three main rules it follows. So in Rust each
variable will have an owner but there can only be one owner per value and the value
must be dropped once it reaches out of the scope. There are other key items in Rust
like borrowing and lifetime that go along with the ownership aspect. All of their goals are
simple to ensure or help there is safety with the security and avoiding any downfalls that
are critical.

Along with any benefits or plus sides to Rust there are also drawbacks that it
faced as well. Some of these drawbacks are that there are some areas that make it
unsafe that a programmer can use these unsafe blocks. Along with these functions and
methods having the possibility of being unsafe there's the fact Rust as a language can
be difficult. It's generally challenging than most languages making it tough to want to
learn at first but has a lot of neat features that make it worth it. Overall, Rust has a lot to
learn about and afford to developers, if they are willing to take the time and learn Rust it
will surely be worth the time and effort.


