e

Bunny Numerics
A Number Theory Microworld

Craig Graci
Jack Narayan
Randy Odendahl

State University of New York, College at Oswego

Abstract. A microworld designed for use in number theoretic investigations
is described. This microworld, bunny numerics, is being used to complement
the workhorse turtle geometry microworld in a Logo based problem solving
course that we have recently initiated at SUNY Oswego. The microworld is
defined, examples of its use are provided, suggestions for its use are offered,
and a few notes on its implementation are madse.

Contents

infroduction

The Bunny World

Basic Bunny Talk

Standard Bunnies, Breeds, and Birthing Operators
Selected Examples of Programming with Bunnies
Bunny Sets and Number Set Operators
Nonstandard Bunnies

Uses of Bunny Numerics

. Some Implementation Notes

10. Concluding Remarks

©CoOoNDOAWN S

e

1. Introduction

The bunny numerics micorworld was inspired largely by Seymour Papert's
conception of how to create a curriculum, which is "to create a network
of microworlds, each one focussing on different areas of knowledge."1

At SUNY Oswego we have recently introduced a two course sequence
designed to satisfy a general education requirement in the area of
mathematics and computation. The two cqurses, Elements of Problem
Solving, Mathematics, and Computation, | and lI, are grounded in Logo .
They are intended to address mathematics in the broadest sense. Thatis,
they aim to provide students with an understanding of the sorts of thought
processes employed by mathematicians and computer scientists in their
problem solving endeavors. In support of this course we have crafted a
small number of microworlds which serve to complement the workhorse
turtle geometry microworld.

This paper describes one of these microworlds, bunny numerics, which was
designed for use in number theoretic investigations. Like the turtie ,
geometry microworld, the bunny numerics microworld is embedded in Logo.
However, since bunny numerics is an "add on," by contrast with turtle
graphics which is inherent in Logo, the bunny numerics code must be
explicitly loaded into the Logo system before it may be used.

Specifically, Sections 2, 3, 4, and 7 present the essential features of the
bunny numerics microworld. Sections 5, 6, and 8 are intended to provide
perspective. Section 9 contains brief remarks on the conceptual model
underlying the bunny numerics microworld, and also on the use of Coral
Software's ObjectLogo as the implementation language.

2. The Bunny World

The world of the bunnies may be thought of as an ocean dotted with a never
ending "line" of islands. The islands are cafled home, 1, 2, 3, and so on.

There are various breeds of bunnies, corresponding, in the main, to kinds
of numbers. For example, there are odd bunnies, even bunnies, Fibonacci
bunnies, and prime bunnies. A given breed of bunny is generally limited

in terms of the islands that it can visit. A prime bunny, for example,

can land only on the prime islands, the islands numbered 2, 3, 5, 7, 11, efc.,
and also on the Home island. A bunny knows never to set foot on an island
which is not suited to its kind. All bunnies are comfortable at Home, which
is also the birth place of all bunnies.

ODPD BUNNIES KNow THEY'RE
NoT WANTED oN EVEN \SLAND S |

3. Basic Bunny Talk

Bunny talk is the set of Logo procedures one uses to communicate with
bunnies. The most fundamental bunny talk procedures are: Hop, Location,
Distance, HopAge, and HopHome. A brief description of each follows.

» Hop bunny {(command)

The specified bunny
moves to the next
highest numbered
istand to which

its kind is suited.

+ Location bunny (operator)

Loc bunny A IRIME BINNY DOES A HOP kg//

The "name" of the island on which the specified bunny is presently resting

is returned.
'l

« Distance bunny (operator)
Dis bunny

The number of hops
that the specified
bunny is from Home
is returned.

AN 000 BunNY FINODS HIS DISTAHCE PRem Home

230

» HopHome bunny (command) » HopAge bunny (operator)
" Age bunny
The specified bunny
hops Home. The number of hops that the
specified bunny has taken
since its birth is returned.

4. Standard Bunnies, Breeds, and Birthing Operators

Standard bunnies are bunnies who are born when bunny numerics is
loaded. Initially, they are found lounging at home. Standard bunnies

were included with young children in mind, and will generally be

ignored by "grown ups.” A good way to begin thinking about number theory
is to simply generate some sequences of numbers, and look for patterns.
The reader may wish to refer to Table 1 when reading the following

examples. Note, particularly, the variables that are used to denote standard
bunnies.

? :;view some squares, assuming Sammy is at home

? REPEAT 10 [Bop :Sammy Type (Loc :Sammy) Type "] | 1}
14916 25 36 49 64 81 100

;:view some multiples of 4, assunming Mark4 is at home
REPEAT 10 [Hop :Mark4 Type (Loc :Mark4) Type "] |]
4 8 12 16 20 24 28 32 36 40

" W)

A generalization of this idea is in order. The following procedurs takes a

bunny as input and displays the "names” of the first few islands on which
it comes to rest.

TO Sequence :b :n

HopHome ;note that this is not a "bunny invariant” procedure
REPEAT :n [Hop :b Type (Loc :b) Type ™| | }
END !

? ;;display the first 10 Fibonacci numbers
? Sequence :Flo 10
1123581321 3455

? ;;display the first 10 prime numbers
? Sequence :Pierre 10
2357111317 19 21 23

Standard breeds are breeds of bunnies that exists when the bunny numerics
system is loaded. One can create virtually any number of bunnies of a
particular bunny breed through application of appropriate birthing operators.
A simple illustration employing two bunnies of like breed in a harmonious
way is given by the following procedure for displaying pairs of twin primes,

231

i.e., prime numbers which differ from one another by two. This procedure
also typifies the representational independence characteristic of many
solutions to number theory problems expressed in bunny talk.

TO DisplayTwinPrimes
Make "bl PrimeBunny
Make "b2 PrimeBunny

Hop :b2
FOREVER
_ [Hop :bl Hop :b2
_ IF ({{(Loc :b2) - (Loc :bl)) =2) { Pr List (Loc :bl) (Loc :b2)]
1
END

? DisplayTwinPrimes
3 5

5 7

11 13

17 19

29 31

The table below identifies a sampling of the standard bunnies, breeds, and
birthing operators.

Standard Breeds Birthing Operators Standard Bunnies

Even Bunny EvenBunny Ed

Square Bunny SquareBunny Sammy

Factorial Bunny FactorialBunny Fred

Fibonacci Bunny FibonacciBunny Flo

Multiple of i Bunny . MultipleBunny < i > Marki1, Mark2, .., Mark12
Divisors of n Bunny DivisorBunny < n > Dit, Di2, .., Di20

Prime Bunny PrimeBunny Pierre

Perfect Bunny PerfectBunny Pearl

Table 1: Some Standard Bunnies, Breeds, and Birthing Operators

The standard breeds were rather arbitrarily chosen, and are merely a small
fraction of the interesting bunny breeds. For a complete listing of the
standard bunny numerics entities see the Bunny Numerics Report [2]. The
definition of nonstandard breeds is discussed in Section 7.

5. Selected Examples of Programming with Bunnies

5.1 Generating Simple Lists of Numbers

The following procedure simply displays a specified number of factorials.

TO DisplayFactorials :n
Make "FB FactorialBunny

REPEAT :n [Hop :FB Print Location ;FB]
END

232

? DisplayFactorials 7
1

2

6

24
120
720
5040

Similarly, one could write a procedure to print out the first n primes, cubes,
etc. Of course we could have called upon Sequence to list the Factorials, but
as they quickly become very large, the placement of each on a separate line
seemed appropriate. Several students, upon seeing the bunnies in action,
have asked about how various sequences of numbers are generated. This is
the sort of interest that we had hoped bunny numerics would generate! We
earnestly encourage interested students 1o investigate the generation of
various number sequences in terms of the more primative Logo procedures.

Displaying the multiples of a given number may be accomplished with the
following procedure:

TO DisplayMultiples :m .
Make "MB MultipleBunny :m
FOREVER [Hop :MB Print (Loc :MB)]

END :

The multiple bunny Breed is partitioned into subbreeds. The parameter
provided to the birthing operator is used fo select the particular subbreed
from which the bunny is born.

5.2 Searching for Numbers with More than One Property

The example below presents a very primative solution to computing the

least common multiple of two integers. Such illustrations can help to

make notions meaningful to beginners. The "leapfrogging” technique

employed by the bunnies is a common idiom used in bunny talk programming. -

TO LeastCommonMultiple :nl :n2
LocalMake “"Jack (MultipleBunny :nl "Jack)
LocalMake "Jill (MultipleBunny :n2 "Jill)
Hop :Jack PrintLoc :Jack
Hop :Jill PrintLoc :Jill
WHILE [NOT ((Loc :Jack) = (Loc.:Jill)) }
[,
IFELSE ((Loc :Jack) < (Loc :Ji11))
[Hop :Jack PrintLoc :Jack]
[Hop :J111 Printloc :Jill]
]
PrintLines 2
(Display "The LCM of " :nl "} and | :n2 "] is: | (Loc :Jack))
END ’

[O

233

? LeastCommonMultiple 4 7
location of Jack: 4
jocation of Jill: 7
location of Jack: 8
location of Jill: 14
location of Jack: 12
location of Jack: 16
location of Jill: 21
jocation of Jack: 20
location of Jack: 24
location of Jill: 28
location of Jack: 28

The ILCM of 4 and 7 is: 28

As may be surmised from this example, several IO utilities are included

with the bunny numerics microworld, e.g., PrintLoc, Display, PrintLines, and
TypeSpaces. Moreover, the use of an optional name parameter, which may
be supplied to any birthing operator, is employed in the calls to the
MultipleBunny birthing operator. This name is used by the PrintLoc
command. (In Objectl.ogo, the application,of a procedure with some number
of inputs other than the standard requires a LISP-like use of parentheses).

The following less prolix example uses the same leapfrogging technique
to compute and display prime Fibonacci numbers. :

TO DisplayFiboPrimes

LocalMake "FB FibonacciBunny

LocalMake "PB PrimeBunny

Hop :FB Hop :PB

FOREVER :

{ IFELSE ((Loc :FB) = (Loc :FB })

[Print (Loc :FB) hop :Fb hop :PB]

[IFELSE ((Loc :FB) < (Loc :PB)) [Hop :FB } [Hop :PB]]

_1

END

? DisplayFiboPrimes

3

5

13
89
233
1597

5.3 Divisors

The number sequences focussed on thus far have all been infinite. In
contrast, the sequences of numbers corresponding to the subbreeds of
divisor bunnies are among those which are, in a sense, finite. These
"sequences" are somewhat artificial, but nontheless turn out to be very
useful. A "divisor 10" bunny, for example, can land on the islands 1, 2, 5,
and 10, in addition to Home. Recall the procedure Sequence:

234

? Sequence { DivisorBunny 10) 8

12510 home 125

The following procedure will neatly display the divisors of a given number.

TO DisplayDivisors :n
LocalMake ”DPiva DivisorBunny :n

REPEAT (LongestTrip :bPiva) [Hop :Diva Type Location :Diva TypeSpace]
PrintlLine

END

? DisplayDivisors 23
123

? DisplayDivisors 24
12346281224

The LongestTrip operator is a part of bunny numerics. It computes the
maximum distance from home that a bunny may find itself, and it may be

applied to any bunny. The computation will terminate, however, only if
the longest trip is finite.

The procedure below displays a table of divisors for the first n natural
numbers.

TO DisplayTableOfDivisors :n
FOR [11 :n]

[Type :1 TypeSpaces (6 - (Count :i)) DisplayDivisors :i]
END

? DisplayTableOfDivisors 6
1 1

2 12

3 13

4 124

5 15

6 1236

Generating sequences of numbers and various tables for analysis is
essential to finding patterns and making conjectures in the elementary
theory of numbers. The bunnies can be extremely helpful in this regard.

6. Bunny Sets and Number Set Operators

There is provision in bunny numerics to create sets of numbers derived from
number sequences. The principle bunny set constructor is BunnySet, which
takes two inputs, a bunny, say b, and an integer, call it n. This operator
returns a set corresponding to the first n elements of the sequence
generated by b. There are also a variety of number set procedures included
with the bunny numerics system for use with bunny sets. To illustrate:

? PrintSet BunnySet OddBunny 15
{1357911131517 19 21 23 25 27 29}

235

? PrintSet BunnySet FibonacciBunny 7
{1235813}

Notice the absence of two occurrences of "1" in the Fibonacci set. Note also
that order is not significant within the braces.

This feature of bunny numerics can be used to describe many ideas cleanly.

The procedure below, for example, generates primes using Eratosthenes'
sieve method.

TO Sieve :n

LocalMake "Numbers Diff (BunnySet NaturalBunny :n) (Set 1)
LocalMake "Limit (Sgrt :n)

FOR [i 2 :Limit]

[

IF (ElementOf :i :Numbers)
{

LocalMake

____ ! "SpecialSet Diff (BunnySet (MultipleBunny :i) :n)} (Set :i)
Make

"Numbers (Diff :Numbers :Specialset)
]

~ OUTPUT (:Numbers)
END

? PrintSet Sieve 50)
{2357 111317 19 23 29 31 37 41 43 47 }

The operators Set, Diff, ElementOf, and the command PrintSet are all part of
the aforementioned number set procedures included with bunny numerics.

7. Nonstandard Bunnies

The procedure NewBunnyBreed is used to create a new breed of bunnies. For
the general form of this operator, and details of its use, the Bunny Numerics
Report {2] may be consulted. Below are two examples of the use of the
NewBunnyBreed operator in defining new bunny breeds.

A breed of geometric progression bunnies could be defined as follows:

NewBunnyBreed "GeoBunny [Base Mult]
_ [Make "CI :Base]
_ [Make "CI (:CI * :Mult) 1}

Cl stands for "Current Island.” Recalling, again, Sequence from Section 4:

? Sequence (GeoBunny 2 3) 5
2 6 18 54 162
? Seqguence (GeoBunny 5 9) 3
5 45 405 .

236

As a second example, a breed of wonder bunnies may be defined in order to
investigate the "wondrousness” number property discussed by Achilles and
the Tortoise in Douglas Hofstadter's Aria with Diverse Variations.2

NewBunnyBreed "WonderBunny [11
_ [Make "CT :1i)

_ [TPELSE (Odd :i) [Make "CI (:CI * 3) + 1] [make "CI (:CI / 2)]]

The following procedure might then be used to verify that a given number
is, indeed, wondrous.

TO IsWondrous :i
Make "WB WonderBunny :i

FOREVER [Hop :WB IF ({(Loc :WB) =1) [OP "True 11
END

8. Uses of Bunny Numerics

One can use bunny numerics in the ways alluded to thus far: to generate
number sequences; to find numbers with particular properties; to test
conjectures. The student should typically, perhaps with some direction
from the teacher, read some of the history and lore of number theory,

identify interesting questions, and explore these questions with the aid of
the bunny numerics microworld.

Beyond this, one might exploit the bunny numerics microworld in a number

of ways. For example, a tried and true induction game based on guessing the
next number in a sequence can be nicely automated in the context of bunny
numerics. We have written a version called INDUCE which takes a bunny as
input, generally a nonstandard bunny of our own design, and then interacts

with the player offering the opportunity to guess the underlying rule. We

employ a very simple acceptance procedure. If the player can correctly

identify the next three numbers in the sequence, we credit the player with
knowing the rule. Each time the person fails to guess the rule, the next)
number in the sequence is divulged. The distance from Home of the bunny at
the time the rule is finally guessed is displayed at the end of a game.

INDUCE is quite like WHEEL OF FORTUNE, only a bit more interesting from the
perspective of a mathematician - with one notable exception, perhaps.

The generation and solution of cross number puzzles are activities enhanced
by the bunny numerics microworld. An interesting Artificial Intelligence
project within the context of Logo, employing both the turtle graphics and

the bunny numerics capabilities, would be to completely automate the
generation of cross number puzzies. Good puzzles must have a certain
"degree of interest” which is sufficiently difficult to describe as to, indeed, - -
render their automatic generation a project within the domain of Artificial
Intelligence. Regardless of how they are created, cross number puzzles

237

present very nice opportunities to apply strategies of constrained search, an
important aspect of problem solving.

9. Some Implementation Notes

Our implementation of the bunny numerics microworld took very litile time,

largely because of the nature of the language that we used, namely Coral
Software's ObjectlLogo.

We exploited the object oriented features of ObjectlLogo in modelling the
bunnies. All bunnies have certain commonalities, e.g., they can all hop,
determine their location, determine their distance from home, determine
their "hopage,” and find their way home. Thus a generic Bunny class was
established as a direct subclass of the Logo class. Due to the fact that
different bunny breeds hop in dramatically different ways, each breed
requires its own refinement of the Hop procedure. Also, each bunny requires
its own set of state variables, and thus its own birthing operator. The
natural thing to do was to make each breed a subclass of the generic bunny
class. This was all a straightforward exercise in object oriented
programming. What was less straightforward was establishing nonstandard

breeds as subclasses of the generic bunny class, "under the table” so to
speak.

We exploited ObjectLogo's very direct kinship with LISP in order to achieve
the undertaking just mentioned. Basically, the NewBunnyBreed procedure
programmably generates ObjectlLogo programs required to establish the new
bunny breed classes as subclasses of the generic bunny class.

We also exploited Objectlogo's inherent ability to operate on large integers.
Multiline (hundreds of digit) factorials and perfect numbers, for example,
are readily computed through bunny numerics, in a manner consistent with
the computation of small factorials and perfect numbers. ‘

10. Concluding Remarks

We are only now using the bunny numerics microworld in the first of our two
new course offerings at SUNY Oswego. We hope soon to report on its
successes and failures.

238

Citations

1.

Papert, S. "MICROWORLDS: Transforming Education,” in Artificial
Intelligence and Education, Volume One, edited by R. Lawler and
M. Yazdani, Ablex Publishing Co., 1987, page 60.

Hofstadter, D. Godel, Escher, Bach, Vintage Books, 1980, pp. 400 and 401.

References

0l

2l

13
(41

&

Coral Software: ObjectLogo Reference Manual. Coral Software Corp.,
1986.

C. Graci: Bunny Numerics Report. SUNY Oswego Department of Computer
:Science, 1989.

D. Hofstadter: Godel, Escher, Bach. Vintage Books, 1980.

R. Lawler and M. Yazdani (ed): Artificial Intelligence and Education,
Volume One. Ablex Publishing Co, 1987.

S. Papert: Mindstorms: Children, Computers and Powerful Ideas.
Basic Books, 1980.

239

