Third Racket Programming Assignment Solution

Learning Abstract:

In the first task of this Racket assignment, I learned how to implement the ten functions of
historical lisp (quote, eval, car, cdr, cons, eq, atom, lambda, define and cond) in Racket to get a
better understanding of how these functions work. In the second task, I learned about some list
processing within Lisp by using some of the functions from the first task such as car, cdr, define,
etc., as well as some new functions such as append and list-ref. Finally, the third and fourth tasks
focused mainly on creating lists as well as finding random or specific elements in the lists all
while using functions mentioned above.

Task 1 - Historical Lisp

Parroting Racket interactions and definitions from “Lesson 7: Historical Lisp”.

> Quote and Eval

Interactions - Constants 9 and “‘red” and ’red

=9
9
} Ilr.r:dll
n rr:d”

> 'red
'red
> |

Interactions - Variants of the quote special form

> quote red
"red

= 'red

'red

=

Interactions - Illustrating the “unbound variable” error

= red

* * red: undefined;
cannot reference an identifier before its definition

> [guote red
'red
> |

Interactions - Examples of standard form evaluation

Interactions - Illustrating the “unbound function” error

> red yellow blue
B e
* * red: undefined;

cannot reference an identifier before its definition

b=

> Car, Cdr and Cons

Interactions - Examples of the car function

= [car apple peach cherry
'apple

-

prolog 1971

app
ch cherry

-

prolog 1971

{({prolog 1971) (haskell 199@))

> [cons ‘'apple ‘' ch cherry
"{apple peach cherr

> cons "{ lisp 1959 prolog
"{{lisp 1959) (prolog 1971) (haskell
> |

haskell 199@

haskell 199@

haskell 1998

> Eq and Atom

Interactions - Examples of the eq? function

define atom? x not ar pair? x

> atom? 'a

atom? '{ abc

atom? 4

atom? '

> Lambda

Interactions - Interactions featuring lambda function application

cons X cons x cons y cons y

4

cons X cons X cons y cons vy "hey 'now
now now)

lambda
define s

* 5

> Define

Definitions - Defining four items, two variables and two functions

A

Interactions - Referencing the two variables and applying the two functions

> lisp-born

sach apple)

square 11

eeing-double '‘meow 'woof
meow woof woof)
seging=double 'oh 'no
{oh oh no no)

define sguare Lambda X

define seeing-double x vy
Cons x cons x cons vy cons y

Interactions - Illustrating the application of these functions

sguare 4

on

square 8

L= I "I
.

=

¥+ rat)
L Cal)

Definitions - Defining the area-of-circle function

define square x

define area=-of-circle diameter
define radius

314.159265358
> |

> Cond

Definitions - Defining the rgb, determine, and got-milk? functions

define rgb color=name
cond
eq? color-=name 'red
'(255 @ @

eq? color=name 'green
@ 255 @

eq? color=name 'blue
» 'purple

eq? color-name "yellow
255 255 @

else
"unknown-color-name

define determine operator operand
cond
eq? ope or 'difference
define maximum { max - operand cadr operand caddr operand
& minimum min car operand cadr operand caddr operand
(imum minimum

operand cadr operand caddr operand
and

define { got-milk? list
cond
null? list #T
eq? 'milk C
else got-mi

Task 2 - References and Constructors

Parroting Racket interactions and definitions from “Lesson 8: Basic List Processing” that pertain

expressly to referencers and constructors.

> Racket Session featuring CAR, CDR and CONS

Interactions - Applying CAR, CDR and CONS

car red green blue

cdr red green blue

sen blue)

Seven nine
seven nine

L Alma"

s 'ESPRESSO '(LATTE CAPPUCCINO
SO LATTE CAPPUCCINO)
‘(abec) '(123
| cons 'SYMBOL °
(SYMBOL)

> Referencing a list element

Interactions - Referencing a list element from scratch

define animals '(ant bat cat dog eel
define guestions '(who what when where why

'(who what when where why)

= | car cdr cdr cdr animals
'dog
car cdr cdr cdr gquestions

Interactions - Referencing a list element from using list-ref

define animals ant bz dog eel
define guestions '{ who what when where why
1m

> animals 3
"dog

= List-ref questions 3
'where

=

> Creating a list

Interactions - Creating a list from scratch

define a random 18
define b random 18
define ¢ random 18
» cons b cons ¢

define a random 18

define b random 18

ine ¢ random 1@
abec

> Appending one list to another list

Interactions - Appending two lists from scratch

define x "{ one Tish
define y '{ two fish

'(two fish)

cons [car x cons (car { cdr x
(one fish two fish)

Interactions - Appending two lists using append

o ¥ '(one Tish
v ' two fish

ish)

o Tish)
append x vy
{one fish two fish)

> Redacted Racket Session Featuring Referencers and Constructors

Interactions - Mindfully doing the redacted session, for real

Task 3 - Random Selection

The simple little program presented selects an element at random from a given list. The list is

provided by means of the read function, which will read any S-expression, including a list.

Definitions - Defining the sampler program

define

define

random length the-list

display the-element display "\n
sampler

> | sampler
(red orange yellow green indige violet

red orange yellow green indige violet
red orange yellow green indige violet
red orange yellow green indigo violet
red orange yellow green indigo violet
red orange yellow green indigo violet
aet ate eat eta tae tea
aet ate eat eta tae tea
aet ate eat eta tae tea
aet ate eat eta tae tea
aet ate eat eta tae tea

ate eat eta tae tea

23456789)

23456789

23456789

23456789

234567829

234567829

user break

Task 4 - Playing Card Programming Challenge

The code and demo for the playing card programming challenge presented at the end of Lesson 8

is presented here.

Definitions - Programming the card playing functionality

Interactions - Mimicking the card playing functionality demo

define c!

define

black? c!

black? c2

(—a—Card

