Ray Tracing Basics

CSE 681 Autumn | |
Han-Wei Shen

_So@ a@/zbu(um &4""" C/Iz"{'ﬂr =

14 4ede+ “Dic 24]dmm‘ry

Forward Ray Tracing

® We shoot a large number of photons

Problem?

Backward Iracing

For every pixel
Construct a ray from the eye
For every object in the scene

Find intersection with the ray

Keep if closest

\
.
R
A
-
C
1
J

TheViewing Model

® Based on a simple Pinhole Camera model

4 Simplest lens model 3 Pertect image 1t hole

3 Inverted image infinitely small

4 Pure geometric optics
4 No blurry

Sk NGy

simplified pin-hole camera

2 Similar triangles

pin-hole camera

Simplified Pinhole Camera

2 Eye = pinhole, Image plane = box face (re-arrange)
- Eye-image pyramid (frustum)

2 Note that the distance/size of image are arbitrary

Basic Ray Tracing Algorithm

for every pixel {
cast a ray from the eye
for every object in the scene
find intersections with the ray
keep 1t 1f closest

j

compute color at the intersection point

j

Construct a Ray

3D parametric line

p(t) = eye + t(s-eye)
r(t): ray equation
eye: eye (camera) position
s: pixel position
t: ray parameter

Question: How to calculate the pixel position P?

Constructing a Ray

® 3D parametric line

P(t) = e +t(s-e) >

o s-€
\\O

*(boldface means vector)
® So we need to know e and s

® VWhat are given (specified by the user or scene
file)?
camera position
camera direction or center of interest
camera orientation or
view up vector
distance to image plane
field of view + aspect ratio
pixel resolution

Given Camera Information

e Camera
* Eye
* Look at
* Orientation (up vector)
IV
n

® Image plane

* Distance to plane, N P e
u

* Field of view inY
* Aspect ration (X/Y)

® Screen
* Pixel resolution

Construct Eye Coordinate System

® We can calculate the pixel positions much
more easily if we construct an eye
coordinate system (eye space) first

Known: eye position, center of interest, view-up
vector

To find out: new origin and three basis vectors

center of interest (COI _
(COD Assumption: the direction of view is

orthogonal to the view plane (the plane
that objects will be projected onto)

Eye Coordinate System

= QOrigin: eye position

= Three basis vectors: one is the normal vector (n) of
the viewing plane, the other two are the ones (u and
v) that span the viewing plane

(u,v,n should be orthogonal to each other)

Eye Coordinate System

= QOrigin: eye position

= Three basis vectors: one is the normal vector (n) of
the viewing plane, the other two are the ones (u and
v) that span the viewing plane

n is pointing away from the
world because we use right
hand coordinate system

N = eye - COI
n= N/ [N]

I

Remember u,v,n should
be all unit vectors

(u,v,n should be orthogonal to each other)

Eye Coordinate System

= What about u and v?

We can get u first -

u is a vector that is perpendicular
to the plane spanned by
N and view up vector (V_up)

Eye Coordinate System

= What about u and v?

We can get u first -

u is a vector that is perpendicular
to the plane spanned by
N and view up vector (V_up)

U= V_up x n

u =U/|U]

Eye Coordinate System

= \What about v?

Knowing n and u, getting v is
easy

Eye Coordinate System

= \What about v?

Knowing n and u, getting v is
easy

= nXxu

v is already normalized

Eye Coordinate System

= pPut it all together

Eye space origin: (Eye.x, Eye.y, Eye.z)

Basis vectors:

n (eye — COI) / | eye — COI|
u (V_upx n)/|V_upxn |
v n xu

Next Step!?

® Determine the size of the image plane
® This can be derived from

v distance from the camera to the center of
the image plane

v Vertical field of view angle

v Aspect ratio of the image plane
* Aspect ratio being Width/Height

Image Plane Setup

Tan(0,/2) = H/2d

W = H * aspect_ratio

C’s position =e -n*d

s position = € - u* W/2 - v * H/2

Assuming the image resolution is X (horizontal) by Y
(vertical), then each pixel has a width of W/X and a height
of H/Y

Then for a pixel s at the image pixel (i,j) , it’'s location is at

L+u*i*W/X+v*j*H/Y

Put it all together

® We can represent the ray as a 3D parametric line

P(t) = e+ t(s-e)

(now you know how to get s and e)

S
o S
® Typically we offset the ray by half \\O

of the pixel width and height, i.e, cast the ray from the pixel
center

enpne

incrementing

(i)

Put it all together

® We can represent the ray as a 3D parametric line

P(t) = e+ t(s-e)

(now you know how to get s and e)

S
o S
® Typically we offset the ray by half \\O

of the pixel width and height, i.e, cast the ray from the pixel
center

enpne

incrementing

(i)

Ray-Sphere Intersection

® Problem: Intersect a line with a sphere

v A sphere with center € = (Xc,Y¢,Zc) and radius R can be
represented as:

2 2 2 2
(X-Xc) + ()’-)’c) + (Z-Zc) -R =0

v For a point p on the sphere, we can write the above in
vector form:

(p-¢€).(p-c) - R2= 0 (note ‘.’ is a dot product)

v" We can plug the point on the ray p(t) = e +td
(e+td-c).(e+td-c) - R2= 0 and yield
(d.d) t% 2d.(e-C)t + (e-c).(e-c) - R = 0 v

Ray-Sphere Intersection

® When solving a quadratic equation
at” + bt + c=0

We have

® Discriminant (] — \:”bQ — 4dac

—b=+d
2a

® and Solution b4+ =

Ray-Sphere Intersection
d = b? — dac

P> — 4ac > 0 = Two solutions (enter and exit)

P —4ac < 0 = No intersection

P> — 4ac = 0 = One solution (ray grazes sphere)

2 Should we use the larger or smaller # value?

Ray-Sphere Intersection
d = b? — dac

P> — 4ac > 0 = Two solutions (enter and exit)

P —4ac < 0 = No intersection

P> — 4ac = 0 = One solution (ray grazes sphere)

47

2 Should we use the larger or smaller # value?

Calculate Normal

® Needed for computing lighting
Q =P(t) — C ... and remember Q/||Q]]

C

.W

o

Calculate Normal

® Needed for computing lighting
Q =P(t) — C ... and remember Q/||Q]]

W

//Q
Q

normal

Choose the closet sphere

* Minimum search problem

For each pixel {
form ray from eye through the pixel center

t .= 00

For each object {
if (t = intersect(ray, object)) {
if (t < tmin) {
closestObject = object
Cin — ¢

m

Final Pixel Color

lf (trnin —— OO)
pixelColor = background color
else

pixelColor = color of object at d along ray

CSE 681

Ray-Object Intersections:

Axis-aligned Box

Ray-Box Intersection Test

Ray-Box Intersection Test

X = x1
.

Ray-Box Intersection Test

* Intersect ray with each plane
— Box is the union of 6 planes
X = Xq, X=Xy

Yy=Yu¥Y=Y
Z=2,2Z=2,

X = x1
.

Ray-Box Intersection Test

* Intersect ray with each plane
— Box is the union of 6 planes
X = Xq, X=Xy

Yy=Yu¥Y=Y
Z=2,2Z=2,

» Ray/axis-aligned plane

X = x1
-
is easy: /

Ray-Box Intersection Test

* Intersect ray with each plane
— Box is the union of 6 planes
X = Xq, X=Xy

Yy=Yu¥Y=Y
Z=2,2Z=2,

» Ray/axis-aligned plane

X = x1
-
is easy: /

Ray-Box Intersection Test

* Intersect ray with each plane
— Box is the union of 6 planes
X = Xq, X=Xy

Yy=Yu¥Y=Y
Z=2,2Z=2,

» Ray/axis-aligned plane

X = x1
-
is easy: /

E.g., solve x component: e, + ID, = x,

Ray-Box Intersection Test

Ray-Box Intersection Test

X =x1
O
/Y vl

Ray-Box Intersection Test

1. Intersect the ray with each plane
2. Sort the intersections

X =x1
O
/Y vl

Ray-Box Intersection Test

1. Intersect the ray with each plane
2. Sort the intersections
3. Choose intersection

X =x1
O
/Y vl

Ray-Box Intersection Test

1. Intersect the ray with each plane

2. Sort the intersections

3. Choose intersection
with the smallest t > 0

X =x1
O
/Y vl

Ray-Box Intersection Test

1. Intersect the ray with each plane

2. Sort the intersections

3. Choose intersection
with the smallest t > 0
that is within the range

X =x1
O
/Y vl

Ray-Box Intersection Test

1. Intersect the ray with each plane

2. Sort the intersections

3. Choose intersection
with the smallest t > 0
that is within the range
of the box

X =x1
O
/Y vl

Ray-Box Intersection Test

1. Intersect the ray with each plane

2. Sort the intersections

3. Choose intersection
with the smallest t > 0
that is within the range
of the box

X =x1
O
/Y vl

Ray-Box Intersection Test

. Intersect the ray with each plane

. Sort the intersections

. Choose intersection
with the smallest t > 0
that is within the range
of the box

X =x1
-
We can do more / Y=yl

Ray-Box Intersection Test

. Intersect the ray with each plane

. Sort the intersections

. Choose intersection
with the smallest t > 0
that is within the range
of the box

X =x1
-
We can do more / Y=yl

efficiently

Only Consider 2D for Now

o if a point (x,y) is in the box, then (x,y) in
[x1, X2] X [y1, yal

The Principle

* Assuming the ray hits the box boundary lines at
intervals [txmin,txmax], [tymin,tymax], the ray

hits the box if and only if the intersection of the
two intervals is not empty

txXmax

txmin

Tymin

Pseudo Code

tymin =(X1 - €4)/Dx
timax =(X2 - €x)/DX

tymin - (Y1 - Ey)/Dy
tymax = (Y2 - €y)/Dy //assume Dy >0

//assume Dx >0

if (txmin ymax) or (tymln xmax)
return false

else
return true

Pseudo Code

banin =(X2 - €)/Dx //if Dx<0
bymax =(X1 - €x J/DX
tymin = (Y2 - €y)/Dy
fymax = (Y1 - €y)/Dy
If (tmin > tymax) OF (fymin > txmax)
return false

else
return true

//if Dy<O

Now Consider All Axis

- We will calculate ¢, and t, for each axis (X,
y, and z)

» Update the intersection interval as we
compute t1 and t2 for each axis

* remember:
t,=(x.- p,)/D,
t2=(X2' pX)/DX

Update [tnear’ tfar]
« Sett

near and tfar =t

« For each axis, compute t1 and t2

— make sure t1 < t2
tnear =t1
—if t2 tfar! tfar= t2

_if t, > t

near’

e Ift

near

> t..., box Is missed

Algorithm

Set tnear= - %, tfar = ®
R(t)=p+t*D
For each pair of planes P associated with X, Y, and Z do: (example uses X
ﬁ‘lgir;gg’zion D, =0 then
it (p, < X3 Or p, > Xy)
return FALSE

else
begin
ty = (X - py) I Dy
t, = (X4 - Py) Dy
if t, > t, then swap (t,, 1,)

if t1 > tnearthen tnearz t1
if t, <t thent,, =1

ift. >t return FALSE
if t.,,< O return FALSE

end

Return t,..,

Special Case

* Ray is parallel to an axis
— IfD,=00rD,=00rD,=0

¢ P, <Xq0rp,>Xx,then miss
Y=Y

y=Y |

Special Case

* Box is behind the eye
—If t,,, <0, box is behind

