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Document History

Date Version Description

Feb 10, 2012 Draft Initial draft version.

Apr 24, 2012 v1.0 Initial public (non-draft) version.

May 29, 2012 v1.1 Minor updates to correct misspellings and clarify wording after 
feedback from API Best Practices Task force.

Aug 2, 2013 v1.2 Updated versioning section.  Additional minor corrections of 
misspellings, wording, etc.

Who Should Read This Document
This best-practices document is intended for developers who are interested in creating RESTful Web 
services that provide high reliability and consistency across multiple service suites.  By following these 
guidelines, services are well positioned for rapid, widespread, public adoption by both internal and 
external clients.

The guidelines in this document are also appropriate for support engineers where they desire to services 
developed using these best practices.  While their concerns may be focused on caching practices, proxy 
rules, monitoring, security and such, this document may be useful as an overarching service 
documentation guide of sorts.

Additionally, management personnel may benefit from these guidelines by endeavoring to understand 
the effort required to create services that are publicly consumable and offer high levels of consistency 
across their service suites.
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Introduction
There are numerous resources on best practices for creating RESTful web services (see the Resources 
section at the end of this document).  Many of the available resources are conflicting, depending on 
when they were written.  Plus, reading and comprehending several books on the subject in order to 
implement services “tomorrow” is not doable.  In order to facilitate the quick uptake and understanding 
of RESTful concepts, without requiring the reading of at least three to five books on the subject, this 
guide is meant to speed up the process—condensing REST best practices and conventions into just the 
high points with not a lot of discussion.

REST is more a collection of principles than it is a set of standards.  Other than its over-arching six 
constraints nothing is dictated.  There are "best practices" and de-facto standards but those are 
constantly evolving—with religious battles waging continuously.

Designed to be brief, this document provides recommendations and some cookbook-style discussion on 
many of the common questions around REST and provides some short background information to offer 
support for effective creation of real-world, production-ready, consistent RESTful services.  This 
document aggregates information available in other sources, adapting it with experience gained through 
hard knocks.

There is still considerable debate as to whether REST is better than SOAP (and vice versa), and perhaps 
there are still reasons to create SOAP services.  While touching on SOAP, this document won't spend a 
lot of time discussing the relative merits.  Instead, because technology and the industry marches on, we 
will proceed with the assumption that leveraging REST is the current best practice for Web service 
creation.

The first section offers an overview of what REST is, its constraints, and what makes it unique.  The 
second section supplies some quick tips as little reminders of REST service concepts.  Later sections go 
more in depth to provide the Web service creator more support and discussion around the nitty-gritty 
details of creating high-quality REST services capable of being publicly exposed in a production 
environment.

What is REST?
The REST architectural style describes six constraints.  These constraints, applied to the architecture, 
were originally communicated by Roy Fielding in his doctoral dissertation (see 
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm) and defines the basis of 
RESTful-style.

The six constraints are:

• Uniform Interface
• Stateless
• Cacheable
• Client-Server
• Layered System
• Code on Demand
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A more detailed discussion of the constraints follows:

Uniform Interface

The uniform interface constraint defines the interface between clients and servers.  It simplifies and 
decouples the architecture, which enables each part to evolve independently. The four guiding 
principles of the uniform interface are:

Resource-Based

Individual resources are identified in requests using URIs as resource identifiers. The resources 
themselves are conceptually separate from the representations that are returned to the client. For 
example, the server does not send its database, but rather, some HTML, XML or JSON that represents 
some database records expressed, for instance, in Finnish and encoded in UTF-8, depending on the 
details of the request and the server implementation.

Manipulation of Resources Through Representations

When a client holds a representation of a resource, including any metadata attached, it has enough 
information to modify or delete the resource on the server, provided it has permission to do so.

Self-descriptive Messages

Each message includes enough information to describe how to process the message. For example, 
which parser to invoke may be specified by an Internet media type (previously known as a MIME 
type). Responses also explicitly indicate their cache-ability.

Hypermedia as the Engine of Application State (HATEOAS)

Clients deliver state via body contents, query-string parameters, request headers and the requested URI 
(the resource name).  Services deliver state to clients via body content, response codes, and response 
headers.  This is technically referred-to as hypermedia (or hyperlinks within hypertext).

Aside from the description above, HATEOS also means that, where necessary, links are contained in 
the returned body (or headers) to supply the URI for retrieval of the object itself or related objects.  
We'll talk about this in more detail later.

The uniform interface that any REST services must provide is fundamental to its design.

Stateless

As REST is an acronym for REpresentational State Transfer, statelessness is key.  Essentially, what 
this means is that the necessary state to handle the request is contained within the request itself, 
whether as part of the URI, query-string parameters, body, or headers.  The URI uniquely identifies the 
resource and the body contains the state (or state change) of that resource.  Then after the server does 
it's processing, the appropriate state, or the piece(s) of state that matter, are communicated back to the 
client via headers, status and response body.
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Most of us who have been in the industry for a while are accustomed to programming within a 
container which provides us with the concept of “session” which maintains state across multiple HTTP 
requests.  In REST, the client must include all information for the server to fulfill the request, resending 
state as necessary if that state must span multiple requests.  Statelessness enables greater scalability 
since the server does not have to maintain, update or communicate that session state.  Additionally, load 
balancers don't have to worry about session affinity for stateless systems.

So what's the difference between state and a resource?  State, or application state, is that which the 
server cares about to fulfill a request—data necessary for the current session or request.  A resource, or 
resource state, is the data that defines the resource representation—the data stored in the database, for 
instance.  Consider application state to be data that could vary by client, and per request.  Resource 
state, on the other hand, is constant across every client who requests it.

Ever had back-button issues with a web application where it went AWOL at a certain point because it 
expected you to do things in a certain order?  That's because it violated the statelessness principle. 
There are cases that don't honor the statelessness principle, such as three-legged OAuth, API call rate 
limiting, etc.  However, make every effort to ensure that application state doesn't span multiple requests 
of your service(s).

Cacheable

As on the World Wide Web, clients can cache responses. Responses must therefore, implicitly or 
explicitly, define themselves as cacheable, or not, to prevent clients reusing stale or inappropriate data 
in response to further requests. Well-managed caching partially or completely eliminates some client–
server interactions, further improving scalability and performance.

Client–server

The uniform interface separates clients from servers. This separation of concerns means that, for 
example, clients are not concerned with data storage, which remains internal to each server, so that the 
portability of client code is improved. Servers are not concerned with the user interface or user state, so 
that servers can be simpler and more scalable. Servers and clients may also be replaced and developed 
independently, as long as the interface is not altered.

Layered system

A client cannot ordinarily tell whether it is connected directly to the end server, or to an intermediary 
along the way. Intermediary servers may improve system scalability by enabling load-balancing and by 
providing shared caches. Layers may also enforce security policies.

Code on demand (optional)

Servers are able to temporarily extend or customize the functionality of a client by transferring logic to 
it that it can execute. Examples of this may include compiled components such as Java applets and 
client-side scripts such as JavaScript.

Complying with these constraints, and thus conforming to the REST architectural style, will enable any 
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kind of distributed hypermedia system to have desirable emergent properties, such as performance, 
scalability, simplicity, modifiability, visibility, portability and reliability.

NOTE: The only optional constraint of REST architecture is code on demand. If a service violates any 
other constraint, it cannot strictly be referred to as RESTful.

REST Quick Tips
Whether it's technically RESTful or not (according to the six constraints mentioned above), here are a 
few recommended REST-like concepts that will result in better, more usable services:

Use HTTP Verbs to Mean Something

Any API consumer is capable of sending GET, POST, PUT, and DELETE verbs, and they greatly 
enhance the clarity of what a given request does. Also, GET requests must not change any underlying 
resource data.  Measurements and tracking may still occur, which updates data, but not resource data 
identified by the URI.

Sensible Resource Names

Having sensible resource names or paths (e.g., /posts/23 instead of /api?type=posts&id=23) improves 
the clarity of what a given request does. Using URL query-string parameters is fantastic for filtering, 
but not for resource names.

Appropriate resource names provide context for a service request, increasing understandability of the 
service API.  Resources are viewed hierarchically via their URI names, offering consumers a friendly, 
easily-understood hierarchy of resources to leverage in their applications.

Resource names should be nouns—avoid verbs as resource names.  It makes things more clear.  Use the 
HTTP methods to specify the verb portion of the request.

XML and JSON

Favor JSON support as the default, but unless the costs of offering both JSON and XML are staggering, 
offer them both.  Ideally, let consumers switch between them by just changing an extension from .xml 
to .json.  In addition, for supporting AJAX-style user interfaces, a wrapped response is very helpful.  
Provide a wrapped response, either by default or for separate extensions, such as .wjson and .wxml to 
indicate the client is requesting a wrapped JSON or XML response (see Wrapped Responses below).

JSON in regards to a "standard" has very few requirements.  And those requirements are only 
syntactical in nature, not about content format or layout.  In other words, the JSON response to a REST 
service call is very much part of the contract—not described in a standard.  More about the JSON data 
format can be found at http://www.json.org/.

Regarding XML use in REST services, XML standards and conventions are really not in play other 
than to utilize syntactically correct tags and text.  In particular, namespaces are not, nor should they be 
use in a RESTful service context.  XML that is returned is more JSON like—simple and easy to read, 
without the schema and namespace details present—just data and links.  If it ends up being more 
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complex than this, see the first paragraph of this tip—the cost of XML will be staggering.  In our 
experience few consumers uses the XML responses anyway.  This is the last 'nod' before it gets phased 
out entirely.

Create Fine-Grained Resources

When starting out, it's much easier to create APIs that mimic the underlying application domain or 
database architecture of your system.  Eventually, you'll want aggregate services—services that utilize 
multiple underlying resources to reduce chattiness.  But it's much easier to create larger resources later 
from individual resources than it is to create fine-grained or individual resources from larger 
aggregates.  Make it easy on yourself and start with small, easily defined resources, providing CRUD 
functionality on those.  You can create those use-case-oriented, chattiness-reducing resources later.

Consider Connectedness

One of the principles of REST is connectedness—via hypermedia links.  While services are still useful 
without them, APIs become more self-descriptive when links are returned in the response.  At the very 
least, a 'self' reference informs clients how the data was or can be retrieved.  Additionally, utilize the 
Location header to contain a link on resource creation via POST.  For collections returned in a response 
that support pagination, 'first', 'last', 'next' and 'prev' links at a minimum are very helpful.

Definitions

Idempotence

Contrary to how it sounds, make no mistake, this has no relation to certain areas of disfunction.  From 
Wikipedia:

In computer science, the term idempotent is used more comprehensively to describe an 
operation that will produce the same results if executed once or multiple times.  This may 
have a different meaning depending on the context in which it is applied. In the case of 
methods or subroutine calls with side effects, for instance, it means that the modified state 
remains the same after the first call.

From a RESTful service standpoint, for an operation (or service call) to be idempotent, clients can 
make that same call repeatedly while producing the same result—operating much like a “setter” 
method in a programming language.  In other words, making multiple identical requests has the same 
effect as making a single request. Note that while idempotent operations produce the same result on the 
server (side effects), the response itself may not be the same (e.g. a resource's state may change 
between requests).

The PUT and DELETE methods are defined to be idempotent.  However, read the caveat on DELETE 
in the HTTP Verbs, DELETE section below.

GET, HEAD, OPTIONS and TRACE methods are defined as idempotent also, since they are defined as 
safe.  Read the section on safety below.
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Safety

From Wikipedia:

Some methods (for example, HEAD, GET, OPTIONS and TRACE) are defined as safe, 
which means they are intended only for information retrieval and should not change the 
state of the server. In other words, they should not have side effects, beyond relatively 
harmless effects such as logging, caching, the serving of banner advertisements or 
incrementing a web counter. Making arbitrary GET requests without regard to the context 
of the application's state should therefore be considered safe.

In short, safety means that calling the method does not cause side effects.  Consequently, clients can 
make safe requests repeatedly without worry of side effects on the server.  This means that services 
must adhere to the safety definitions of GET, HEAD, OPTIONS and TRACE operations.  Otherwise, 
besides being confusing to service consumers, it can cause problems for Web caching, search engines 
and other automated agents—making unintended changes on the server.

By definition, safe operations are idempotent, since they produce the same result on the server.

Safe methods are implemented as read-only operations.  However, safety does not mean that the server 
must return the same response every time.

HTTP Verbs
The HTTP verbs comprise a major portion of our “uniform interface” constraint and provide us the 
action counterpart to the noun-based resource.  The primary or most-commonly-used HTTP verbs (or 
methods, as they are properly called) are POST, GET, PUT, and DELETE.  These correspond to create, 
read, update, and delete (or CRUD) operations, respectively.  There are a number of other verbs, too, 
but are utilized less frequently.  Of those less-frequent methods, OPTIONS and HEAD are used more 
often than others.

GET

The HTTP GET method is used to retrieve (or read) a representation of a resource.  In the “happy” (or 
non-error) path, GET returns a representation in XML or JSON and an HTTP response code of 200 
(OK).  In an error case, it most often returns a 404 (NOT FOUND) or 400 (BAD REQUEST).

Examples:
GET http://www.example.com/customers/12345
GET http://www.example.com/customers/12345/orders
GET http://www.example.com/buckets/sample

According to the design of the HTTP specification, GET (along with HEAD) requests are used only to 
read data and not change it.  Therefore, when used this way, they are considered safe.  That is, they can 
be called without risk of data modification or corruption—calling it once has the same effect as calling 
it 10 times, or none at all.  Additionally, GET (and HEAD) is idempotent, which means that making 
multiple identical requests ends up having the same result as a single request.
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Do not expose unsafe operations via GET—it should never modify any resources on the server.

PUT

PUT is most-often utilized for update capabilities, PUT-ing to a known resource URI with the request 
request body containing the newly-updated representation of the original resource.

However, PUT can also be used to create a resource in the case where the resource ID is chosen by the 
client instead of by the server.  In other words, if the PUT is to a URI that contains the value of a non-
existent resource ID.  Again, the request body contains a resource representation.  Many feel this is 
convoluted and confusing.  Consequently, this method of creation should be used sparingly, if at all.

Alternatively, use POST to create new resources and provide the client-defined ID in the body 
representation—presumably to a URI that doesn't include the ID of the resource (see POST below).

Examples:
PUT http://www.example.com/customers/12345
PUT http://www.example.com/customers/12345/orders/98765
PUT http://www.example.com/buckets/secret_stuff

On successful update, return 200 (or 204 if not returning any content in the body) from a PUT.  If using 
PUT for create, return HTTP status 201 on successful creation.  A body in the response is optional—
providing one consumes more bandwidth.   It is not necessary to return a link via a Location header in 
the creation case since the client already set the resource ID.  See the Return Values section below.

PUT is not a safe operation, in that it modifies (or creates) state on the server, but it is idempotent.  In 
other words, if you create or update a resource using PUT and then make that same call again, the 
resource is still there and still has the same state as it did with the first call.

If, for instance, calling PUT on a resource increments a counter within the resource, the call is no 
longer idempotent. Sometimes that happens and it may be enough to document that the call is not 
idempotent.  However, it's recommended to keep PUT requests idempotent.  It is strongly 
recommended to use POST for non-idempotent requests.

POST

The POST verb is most-often utilized for creation of new resources.  In particular, it's used to create 
subordinate resources.  That is, subordinate to some other (e.g. parent) resource.  In other words, when 
creating a new resource, POST to the parent and the service takes care of associating the new resource 
with the parent, assigning an ID (new resource URI), etc.

Examples:
POST http://www.example.com/customers
POST http://www.example.com/customers/12345/orders

On successful creation, return HTTP status 201, returning a Location header with a link to the newly-
created resource with the 201 HTTP status.

POST is neither safe or idempotent.  It is therefore recommended for non-idempotent resource requests.  
Making two identical POST requests will most-likely result in two resources containing the same 
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information.

PUT vs POST for Creation

In short, favor using POST for resource creation.  Otherwise, use PUT when the client is in charge of 
deciding which URI (via it's resource name or ID) the new resource will have:  if the client knows what 
the resulting URI (or resource ID) will be, use PUT at that URI.  Otherwise, use POST when the server 
or service is in charge of deciding the URI for the newly-created resource.  In other words, when the 
client doesn't (or shouldn't) know what the resulting URI will be before creation, use POST to create 
the new resource.

DELETE

DELETE is pretty easy to understand.  It is used to delete a resource identified by a URI.

Examples:
DELETE http://www.example.com/customers/12345
DELETE http://www.example.com/customers/12345/orders
DELETE http://www.example.com/buckets/sample

On successful deletion, return HTTP status 200 (OK) along with a response body, perhaps the 
representation of the deleted item (often demands too much bandwidth), or a wrapped response (see 
Return Values below).  Either that or return HTTP status 204 (NO CONTENT) with no response body.  
In other words, a 204 status with no body, or the JSEND-style response and HTTP status 200 are the 
recommended responses.

HTTP-spec-wise, DELETE operations are idempotent.  If you DELETE a resource, it's removed.  
Repeatedly calling DELETE on that resource ends up the same: the resource is gone.  If calling 
DELETE say, decrements a counter (within the resource), the DELETE call is no longer idempotent.  
As mentioned previously, usage statistics and measurements may be updated while still considering the 
service idempotent as long as no resource data is changed.  Using POST for non-idempotent resource 
requests is recommended.

There is a caveat about DELETE idempotence, however.  Calling DELETE on a resource a second time 
will often return a 404 (NOT FOUND) since it was already removed and therefore is no longer 
findable.  This makes DELETE operations no longer idempotent, but is an appropriate compromise if 
resources are removed from the database instead of being simply marked as deleted.

Below is a table summarizing recommended return values of the primary HTTP methods in 
combination with the resource URIs:

HTTP Verb /customers /customers/{id}

GET 200 (OK), list of customers. Use pagination, 
sorting and filtering to navigate big lists.

200 (OK), single customer. 404 (Not 
Found), if ID not found or invalid.

PUT 404 (Not Found), unless you want to 
update/replace every resource in the entire 
collection.

200 (OK) or 204 (No Content).  404 
(Not Found), if ID not found or 
invalid.

08/02/13 www.RestApiTutorial.com Page 13 of 40

http://Www.RestApiTutorial.com/


RESTful Service Best Practices

POST 201 (Created), 'Location' header with link to 
/customers/{id} containing new ID.

404 (Not Found).

DELETE 404 (Not Found), unless you want to delete the 
whole collection—not often desirable.

200 (OK).  404 (Not Found), if ID 
not found or invalid.

Resource Naming
In addition to utilizing the HTTP verbs appropriately, resource naming is arguably the most debated 
and most important concept to grasp when creating an understandable, easily leveraged Web service 
API.  When resources are named well, an API is intuitive and easy to use.  Done poorly, that same API 
can feel klutzy and be difficult to use and understand.  Below are a few tips to get you going when 
creating the resource URIs for your new API.

Essentially, a RESTFul API ends up being simply a collection of URIs, HTTP calls to those URIs and 
some JSON and/or XML representations of  resources, many of which will contain relational links.  
The RESTful principal of addressability is covered by the URIs.  Each resource has its own address or 
URI—every interesting piece of information the server can provide is exposed as a resource.  The 
constraint of uniform interface is partially addressed by the combination of URIs and HTTP verbs, and 
using them in line with the standards and conventions.

In deciding what resources are within your system, name them as nouns as opposed to verbs or actions.  
In other words, a RESTful URI should refer to a resource that is a thing instead of referring to an 
action.  Nouns have properties as verbs do not, just another distinguishing factor.

Some example resources are:

• Users of the system.
• Courses in which a student is enrolled.
• A user's timeline of posts.
• The users that follow another user.
• An article about horseback riding.

Each resource in a service suite will have at least one URI identifying it.  And it's best when that URI 
makes sense and adequately describes the resource.  URIs should follow a predictable, hierarchical 
structure to enhance understandability and, therefore, usability:  predictable in the sense that they're 
consistent, hierarchical in the sense that data has structure—relationships.  This is not a REST rule or 
constraint, but it enhances the API.

RESTful APIs are written for consumers.  The name and structure of URIs should convey meaning to 
those consumers.  It's often difficult to know what the data boundaries should be, but with 
understanding of your data, you most-likely are equipped to take a stab and what makes sense to return 
as a representation to your clients.  Design for your clients, not for your data.

Let's say we're describing an order system with customers, orders, line items, products, etc.  Consider 
the URIs involved in describing the resources in this service suite:

08/02/13 www.RestApiTutorial.com Page 14 of 40

http://Www.RestApiTutorial.com/


RESTful Service Best Practices

Resource URI Examples

To insert (create) a new customer in the system, we might use:
POST http://www.example.com/customers

To read a customer with Customer ID# 33245:
GET http://www.example.com/customers/33245
The same URI would be used for PUT and DELETE, to update and delete, respectively.

Here are proposed URIs for products:
POST http://www.example.com/products
for creating a new product.

GET|PUT|DELETE http://www.example.com/products/66432
for reading, updating, deleting product 66432, respectively.

Now, here is where it gets fun...  What about creating a new order for a customer?
One option might be:
POST http://www.example.com/orders
And that could work to create an order, but it's arguably outside the context of a customer.

Because we want to create an order for a customer (note the relationship), this URI perhaps is not as 
intuitive as it could be.  It could be argued that the following URI would offer better clarity:
POST http://www.example.com/customers/33245/orders
Now we know we're creating an order for customer ID# 33245.

Now what would the following return?
GET http://www.example.com/customers/33245/orders
Probably a list of orders that customer #33245 has created or owns.  Note:  we may choose to not 
support DELETE or PUT for that url since it's operating on a collection.

Now, to continue the hierarchical concept, what about the following URI?
POST http://www.example.com/customers/33245/orders/8769/lineitems
That might add a line item to order #8769 (which is for customer #33245).  Right!  GET for that URI 
might return all the line items for that order.  However, if line items don't make sense only in customer 
context or also make sense outside the context of a customer, we would offer a POST 
www.example.com/orders/8769/lineitems URI.

Along those lines, because there may be multiple URIs for a given resource, we might also offer a GET 
http://www.example.com/orders/8769 URI that supports retrieving an order by number without having 
to know the customer number.

To go one layer deeper in the hierarchy:
GET http://www.example.com/customers/33245/orders/8769/lineitems/1
Might return only the first line item in that same order.

By now you can see how the hierarchy concept works.  There aren't any hard and fast rules, only make 
sure the imposed structure makes sense to consumers of your services.  As with everything in the craft 
of Software Development, naming is critical to success.

Look at some widely used APIs to get the hang of this and leverage the intuition of your teammates to 
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refine your API resource URIs.  Some example APIs are:

• Twitter: https://dev.twitter.com/docs/api
• Facebook: http://developers.facebook.com/docs/reference/api/
• LinkedIn: https://developer.linkedin.com/apis

Resource Naming Anti-Patterns

While we've discussed some examples of appropriate resource names, sometimes it's informative to see 
some anti-patterns.  Below are some examples of poor RESTful resource URIs seen in the “wild.”  
These are examples of what not to do!

First up, often services use a single URI to specify the service interface, using query-string parameters 
to specify the requested operation and/or HTTP verb.  For example to update customer with ID 12345, 
the request for a JSON body might be:

GET http://api.example.com/services?op=update_customer&id=12345&format=json

By now, you're above doing this.  Even though the 'services' URL node is a noun, this URL is not self-
descriptive as the URI hierarchy is the same for all requests.  Plus, it uses GET as the HTTP verb even 
though we're performing an update.  This is counter-intuitive and is painful (even dangerous) to use as 
a client.

Here's another example following the same operation of updating a customer:

GET http://api.example.com/update_customer/12345

And its evil twin:

GET http://api.example.com/customers/12345/update

You'll see this one a lot as you visit other developer's service suites.  Note that the developer is 
attempting to create RESTful resource names and has made some progress.  But you're better than this
—able to identify the verb phrase in the URL.  Notice that we don't need to use the 'update' verb phrase 
in the URL because we can rely on the HTTP verb to inform that operation.  Just to clarify, the 
following resource URL is redundant:

PUT http://api.example.com/customers/12345/update

With both PUT and 'update' in the request, we're offering to confuse our service consumers!  Is 'update' 
the resource?  So, we've spent some time beating the horse at this point.  I'm certain you understand...

Pluralization

Let's talk about the debate between the pluralizers and the “singularizers”...  Haven't heard of that 
debate?  It does exist.  Essentially, it boils down to this question...

Should URI nodes in your hierarchy be named using singular or plural nouns?  For example, should 
your URI for retrieving a representation of a customer resource look like this:

GET http://www.example.com/customer/33245

or:
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GET http://www.example.com/customers/33245

There are good arguments on both sides, but the commonly-accepted practice is to always use plurals 
in node names to keep your API URIs consistent across all HTTP methods.  The reasoning is based on 
the concept that customers are a collection within the service suite and the ID (e.g. 33245) refers to one 
of those customers in the collection.

Using this rule, an example multi-node URI using pluralization would look like (emphasis added):

GET http://www.example.com/customers/33245/orders/8769/lineitems/1

with 'customers', 'orders', and 'lineitems' URI nodes all being their plural forms.

This implies that you only really need two base URLs for each root resource.  One for creation of the 
resource within a collection and the second for reading, updating and deleting the resource by its 
identifier.  For example the creation case, using customers as the example, is handled by the following 
URL:

POST http://www.example.com/customers

And the read, update and delete cases are handled by the following:

GET|PUT|DELETE http://www.example.com/customers/{id}

As mentioned earlier, there may be multiple URIs for a given resource, but as a minimum full CRUD 
capabilities are aptly handled with two simple URIs.

You ask if there is a case where pluralization doesn't make sense.  Well, yes, in fact there is.  When 
there isn't a collection concept in play.  In other words, it's acceptable to use a singularized resource 
name when there can only be one of the resource—it's a singleton resource.  For example, if there was 
a single, overarching configuration resource, you might use a singularized noun to represent that:

GET|PUT|DELETE http://www.example.com/configuration

Note the lack of a configuration ID and usage of POST verb.  And say that there was only one 
configuration per customer, then the URL might be:

GET|PUT|DELETE http://www.example.com/customers/12345/configuration

Again, no ID for the configuration and no POST verb usage. Although, I'm sure that in both of these 
cases POST usage might be argued to be valid.  Well... OK.

Returning Representations
As mentioned earlier, it is desirable for a service to support multiple representations of resources, 
including JSON and XML, as well as wrapped JSON and XML. As the default representation, the 
recommendation is JSON, but services should allow clients to specify alternative representations.

For a client to request a representation format, there is a question around whether to use the Accept 
header a file-extension-style format specifier, query-string parameter, etc.  Optimally, services would 
support all of those methods.  However, industry is currently converging on using a format specifier, 
which looks more like a file extension.  Therefore, the recommendation is that, at a minimum, services 
support the use of file extensions such as '.json', '.xml' and wrapped options, '.wjson' and '.wxml'.
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Using this technique, the representation format is specified in the URI, enhancing visibility.  For 
example, GET http://www.example.com/customers.xml would return the list of customer representations 
in XML format.  Likewise, GET http://www.example.com/customers.json would return a JSON 
representation.  This makes the services simple to use from even the most basic client (such as 'curl') 
and is recommended.

Also, services should return the default representation format (presumably JSON) when a format 
specifier is not included on the url.  For example:

GET http://www.example.com/customers/12345
GET http://www.example.com/customers/12345.json

Both of the above return the 12345 customer resource in a JSON representation, which is the default 
format for this service.

GET http://www.example.com/customers/12345.xml

Returns the 12345 customer resource in an XML representation, if supported. If an XML representation 
of this resource is not supported by this service, an HTTP 404 error should be returned.

Use of the HTTP Accept header is considered by many to be a more elegant approach, and is in 
keeping with the meaning and intent of the HTTP specification with regards to how clients notify 
HTTP servers of which content types they support.  However, to support both wrapped and unwrapped 
responses from your services, in order to utilize the Accept header, you must implement your own 
custom types—since there are no standard types for these formats.  This increases the complexity of 
both clients and services greatly.  See Section 14.1 of RFC 2616 
(http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1) for details on the Accept header.  
Supporting file-extension-style format specifiers is simple, straight-forward, gets the job done in the 
fewest number of characters, and easily supports scripting—without having to leverage HTTP headers.

In general, when we talk about REST services, XML is largely irrelevant.  Barely anyone uses XML 
with REST although supporting XML is recommended.  XML standards and conventions are really not 
in play.  In particular, namespaces are not, nor should they be use in a RESTful service context.  It just 
muddies the waters and makes things more complicated.  So the XML that is returned is more JSON 
like—simple and easy to read, without the schema and namespace constraints—non-standard in other 
words, but parse-able.

Resource Discoverability Through Links (HATEOAS cont'd)

One of the guiding principals of REST (via the Uniform Interface constraint) is that application state is 
communicated via hypertext.  This is often referred to as Hypertext As The Engine of Application State 
(HATEOAS) as mentioned above in the What is Rest? Section.

According to Roy Fielding's blog (at http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-
driven), the most important part of a REST interface is its usage of hypertext.  Further, he states that an 
API should be usable and understandable given an initial URI without prior knowledge or out-of-band 
information.  That is, an API should be navigable via its links to various components of the data.  
Returning only data representations is discouraged.

This practice is not often followed by current industry leaders in services, reflecting that HATEOAS 
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usage is higher on the maturity model.  Looking around at many services, convention is to return more 
data and less (or no) links.  This is contrary to Fielding's REST constraints.  Fielding says, “Every 
addressable unit of information carries an address... Query results are represented by a list of links with 
summary information, not by arrays of object representations.”

On the other hand, simply returning collections of links can be a major cause of network chattiness.  In 
the real world, depending on requirements or use cases, chattiness of the API interface is managed by 
balancing how much “summary” data is included along with the relational hypertext links in service 
responses.

Also, full use of HATEOAS can increase implementation complexity and impose a significant burden 
on service clients, decreasing developer productivity on both client and server ends of the equation.  
Consequently, it is imperative to balance hyperlinking service implementations with available 
development resources.

A minimal set of hyperlinking practices provides major gains in service usability, navigability and 
understandability while minimizing development impact and reducing the coupling between client and 
server.  These minimal recommendations are resources created via POST and for collections returned 
from GET requests, with additional recommendations for pagination cases, which are described below.

Minimal Linking Recommendations

In create use cases, the URI (link) for the newly-created resource should be returned in the Location 
response header and the response body be empty—or contain only the ID of the newly-created 
resource.

For collections of representations being returned from a service, each representation should minimally 
carry a 'self' link property in its own links collection.  Other links may be present in the returned as a 
separate links collection to facilitate pagination, with 'first', 'previous', 'next', 'last' links where 
applicable.

See the examples in the Link Format section below for more information.

Link Format

Regarding overall link format standards it is recommended to adhere to some semblance of the Atom, 
AtomPub, or Xlink style.  JSON-LD is getting some traction too, but is not widely adopted yet (if it 
ever will be).  Most widespread in the industry is usage of the Atom link style with a “rel” element and 
an “href” element that contains the full URI for the resource without any authentication or query-string 
parameters.  The “rel” element, can contain the standard values "alternate", "related", "self", 
"enclosure", and "via", plus “first”, “last”, “previous”, “next” for pagination links.  Use them where 
they make sense and add your own when needed.

Some of the XML Atom format concepts are somewhat irrelevant for links being represented in JSON.  
For instance, the METHOD property is not needed for a RESTful resource since the URIs are the same 
for a given resource, with all of the HTTP methods being supported (for CRUD behavior)--so listing 
them individually is overkill.

Let's make all this talk a little more concrete with some examples.  Here's what the response would 
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look like after creating a new resource with a call to:

POST http://api.example.com/users

And here's an example set of response headers with the Location header set containing the new 
resource URI:

HTTP/1.1 201 CREATED
Status: 201
Connection: close
Content-Type: application/json; charset=utf-8
Location: http://api.example.com/users/12346

The body is either empty, or contains a wrapped response (see Wrapped Responses below).

Here is an example JSON response to a GET request that returns a collection of representations without 
pagination involved:

{“data”:[{“user_id”:”42”, “name”:”Bob”, “links”:[{“rel”:”self”, 
“href”:”http://api.example.com/users/42”}]}, {“user_id”:”22”, “name”:”Frank”, “links”:
[{“rel”:”self”, “href”:”http://api.example.com/users/22”}]}, {“user_id”:”125”, “name”: “Sally”, 
“links”:[{“rel”:”self”, “href”:”http://api.example.com/users/125”}]}]}

Note the links array containing a single reference to “self” for each item in the collection.  This array 
could potentially contain other relationships, such as children, parent, etc.

The final example is a JSON response to a GET request that returns a collection where pagination is 
involved (we're using three items per page) and we're on the third page of the collection:

{“data”:[{“user_id”:”42”, “name”:”Bob”, “links”:[{“rel”:”self”, 
“href”:”http://api.example.com/users/42”}]}, {“user_id”:”22”, “name”:”Frank”, “links”:
[{“rel”:”self”, “href”:”http://api.example.com/users/22”}]}, {“user_id”:”125”, “name”: “Sally”, 
“links”:[{“rel”:”self”, “href”:”http://api.example.com/users/125”}]}], “links”:[{“rel”:“first”, 
“href”:”http://api.example.com/users?offset=0&limit=3”}, {“rel”:“last”, 
“href”:”http://api.example.com/users?offset=55&limit=3”}, {“rel”:“previous”, 
“href”:”http://api.example.com/users?offset=3&limit=3”}, {“rel”:”next”, 
“href”:”http://api.example.com/users?offset=9&limit=3”}]}

In this example, the links collection in the response is populated for pagination purposes along with the 
link to “self” in each of the items in the collection.  There could be additional links here related to the 
collection but not related to pagination.  The simple summary is, there are two places to include links in 
a collection.  For each item in the collection (those in the data object, which is the collection of 
representations requested), include a links collection that, minimally, would contain a “self” reference.  
Then, in a separate object, links, include links that apply to the entire collection as applicable, such as 
pagination-related links.

For the create use case—create via POST, include a Location header with a link to the newly-created 
object.
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Wrapped Responses

Services have the opportunity to return both HTTP status codes along with a body in the response.  In 
many JavaScript frameworks, HTTP status response codes are not returned to the end-developer, often 
preventing the client from determining behavior based on that status code.  Additionally, with the 
myriad response codes in the HTTP spec, often there are only a few that clients care about—frequently 
boiling down to 'success', 'error', or 'failure'.  Consequently, it is beneficial to wrap responses in a 
representation that contains information about the response as well as the response itself.

One such proposal is that from OmniTI Labs, the so-called JSEND response.  More information can be 
found at http://labs.omniti.com/labs/jsend.  Another option is proposed by Douglas Crockford and can 
be read about at http://www.json.org/JSONRequest.html.

In practice neither of these proposals adequately covers all cases. Basically, current best practice is to 
wrap regular (non-JSONP) responses with the following properties:

• code – contains the HTTP response status code as an integer.

• status – contains the text: “success”, “fail”, or “error”.  Where “fail” is for HTTP status 
response values from 500-599, “error” is for statuses 400-499, and “success” is for everything 
else (e.g. 1XX, 2XX and 3XX responses).

• message – only used for “fail” and “error” statuses to contain the error message.  For 
internationalization (i18n) purposes, this could contain a message number or code, either alone 
or contained within delimiters.

• data – that contains the response body.  In the case of “error” or “fail” statuses, this contains the 
cause, or exception name.

A successful response in wrapped style looks similar to this:
{"code":200,"status":"success","data":
{"lacksTOS":false,"invalidCredentials":false,"authToken":"4ee683baa2a3332c3c86026d"}}

An example error response in wrapped style looks like this:
{"code":401,"status":"error","message":"token is invalid","data":"UnauthorizedException"}

In XML, these two wrapped responses would correspond to:
<response>
  <code>200</code>
  <status>success</status>
  <data class="AuthenticationResult">
    <lacksTOS>false</lacksTOS>
    <invalidCredentials>false</invalidCredentials>
    <authToken>1.0|idm|idm|4ee683baa2a3332c3c86026d</authToken>
  </data>
</response>

And:
<response>
  <code>401</code>
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  <status>error</status>
  <message>token is invalid</message>
  <data class="string">UnauthorizedException</data>
</response>

Handling Cross-Domain Issues

We've all heard about working around the browser's same origin policy or common-source requirement.  
In other words, the browser can only make requests to the site it's currently displaying. For example, if 
the site currently being displayed is www.Example1.com, then that site cannot perform a request against
www.Example2.com.  Obviously, this impacts how sites access services.

Presently, there are two widely-accepted methods to support cross-domain requests: JSONP and Cross-
Origin Resource Sharing (CORS).  JSONP or "JSON with padding" is a usage pattern that provides a 
method to request data from a server in a different domain.  It works by the service returning arbitrary 
JavaScript code instead of JSON.  These responses are evaluated by the JavaScript interpreter, not 
parsed by a JSON parser. CORS, on the other hand, is a web browser technology specification, which 
defines ways for a web server to allow its resources to be accessed by a web page from a different 
domain.  It is seen as a modern alternative to JSONP and is supported by all modern browsers.  
Therefore, JSONP is not recommended.  Choose CORS whenever and wherever possible.

Supporting CORS

Implementing CORS on a server is as simple as sending an additional HTTP header in the response, for 
example:

Access-Control-Allow-Origin: *

An access origin of '*' should only be set if the data is meant for public consumption. In most cases 
the Access-Control-Allow-Origin header should specify which domains should be able to initiate a 
CORS request. Only URLs that need to be accessed cross-domain should have the CORS header set.

Access-Control-Allow-Origin: http://example.com:8080 http://foo.example.com

Allow only trusted domains in Access-Control-Allow-Origin header.

Access-Control-Allow-Credentials: true

Use this header only when necessary as it will send the cookies/sessions if the user is logged into the 
application.

These headers can be configured via the Web server, proxy or sent from the service itself. 
Implementing it within the services is not recommended as it's not flexible. Instead, use the second 
form, a space delimited list of appropriate domains configured on your Web server. More about CORS 
can be found at: http://enable-cors.org/.

Supporting JSONP

JSONP gets around the browser limitation by utilizing GET requests to perform all service calls. In 
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essence, the requester adds a query-string parameter (e.g. jsonp=”jsonp_callback”) to the request, 
where the value of the “jsonp” parameter is the name of a javascript function that will be called when 
the response is returned.

There severe limitations to the functionality enabled by JSONP, since GET requests do not contain a 
request body and, therefore, information must be passed via query-string parameters.  Also, to support 
PUT, POST and DELETE operations, the effective HTTP method must also be passed as a query-string 
argument, such as _method=POST.  Tunneling the HTTP method like this is not recommended and can 
open services up to security risks.

JSONP works on legacy browsers which preclude CORS support, but affects how services are built if 
they're going to support it.  Alternatively, JSONP can be implemented via a proxy.  Overall, JSONP is 
being de-emphasized in favor of CORS.  Favor CORS whenever possible.

To support JSONP on the server side, when the JSONP query-string parameter is passed in, the 
response must be manipulated a bit as follows:

1. The response body must be wrapped as the parameter to the given javascript function in the 
jsonp parameter (e.g. jsonp_callback(“<JSON response body>”)).

2. Always return HTTP status 200 (OK) and return the actual status as part of the JSON response.

Additionally, it's also often necessary to include headers as part of the response body.  This enables the 
JSONP callback method to make decisions on response handling based on the response body since it's 
not privy to the information in response headers and status.

An example error response following the above wrapped response recommendations is as follows 
(note: HTTP response status is 200):

jsonp_callback(“{'code':'404', 'status':'error','headers':[],'message':'resource XYZ not 
found','data':'NotFoundException'}”)

A successful creation response looks like this (still with an HTTP response status of 200):

jsonp_callback(“{'code':'201', 'status':'error','headers':
[{'Location':'http://www.example.com/customers/12345'}],'data':'12345'}”)

Querying, Filtering and Pagination
For large data sets, limiting the amount of data returned is important from a band-width standpoint.  
But it's also important from a UI processing standpoint as a UI often can only display a small portion of 
a huge data set.  In cases where the dataset grows indefinitely, it's helpful to limit the amount of data 
returned by default.  For instance, in the case of Twitter returning a person's tweets (via their home 
timeline), it returns up to 20 items unless otherwise specified in the request and even then will return a 
maximum of 200.

Aside from limiting the amount of data returned, we also need to consider how to “page” or scroll 
through that large data set if more than that first subset needs retrieval.  This is referred to as pagination
—creating “pages” of data, returning known sections of a larger list and being able to page “forward” 
and “backward” through that large data set.  Additionally, we may want to specify the fields or 
properties of a resource to be included in the response, thereby limiting the amount of data that comes 
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back and we eventually want to query for specific values and/ or sort the returned data.

There are combinations of two primary ways to limit query results and perform pagination.  First, the 
indexing scheme is either page-oriented or item-oriented.  In other words, incoming requests will 
specify where to begin returning data with either a “page” number, specifying a number of items per 
page, or specify a first and last item number directly (in a range) to return.  In other words the two 
options are, “give me page 5 assuming 20 items per page” or “give me items 100 through 120.”

Service providers are split on how this should work.  However, some UI tools, such as the Dojo JSON 
Datastore object, chooses to mimic the HTTP specifications use of byte ranges.  It's very helpful if your 
services support that right out of the box so no translation is necessary between your UI toolkit and 
back-end services.

The recommendations below support both the Dojo model for pagination, which is to specify the range 
of items being requested using the Range header, and utilization of query-string parameters.  By 
supporting both, services are more flexible—usable from both advanced UI toolkits, like Dojo, as well 
as by simple, straight-forward links and anchor tags.  It shouldn't add much complexity to the 
development effort to support both options.  However, if your services don't support UI functionality 
directly, consider eliminating support for the Range header option.

It's important to note that querying, filtering and pagination are not recommended for all services.  This 
behavior is resource specific and should not be supported on all resources by default.  Documentation 
for the services and resources should mention which end-points support these more complex 
capabilities.

Limiting Results

The “give me items 3 through 55” way of requesting data is more consistent with how the HTTP spec 
utilizes the Range header for bytes so we use that metaphor with the Range header.  However, the 
“starting with item 2 give me a maximum of 20 items” is easier for humans to read, formulate and 
understand so we use that metaphor in supporting the query-string parameters.

As mentioned above, the recommendation is to support use of both the HTTP Range header plus query-
string parameters, offset and limit, in our services to limit results in responses.  Note that, given support 
for both options, the query-string parameters should override the Range header.

One of the first questions your going to ask is, “Why are we supporting two metaphors with these 
similar functions as the numbers in the requests will never match?  Isn't that confusing?”  Um... That's 
two questions.  Well, to answer your question, it may be confusing.  The thing is, we want to make 
things in the query-string especially clear, easily-understood, human readable and easy to construct and 
parse.  The Range header, however, is more machine-based with usage dictated to us via the HTTP 
specification.

In short, the Range header items value must be parsed, which increases the complexity, plus the client 
side has to perform some computation in order to construct the request.  Using the individual limit and 
offset parameters are easily-understood and created, usually without much demand on the human 
element.
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Limiting via the Range Header

When a request is made for a range of items using a HTTP header instead of query-string parameters, 
include a Range header specifying the range as follows:

Range: items=0-24

Note that items are zero-based to be consistent with the HTTP specification in how it uses the Range 
header to request bytes.  In other words, the first item in the dataset would be requested by a beginning 
range specifier of zero (0).  The above request would return the first 25 items, assuming there were at 
least 25 items in the data set.

On the server side, inspect the Range header in the request to know which items to return.  Once a 
Range header is determined to exist, it can be simply parsed using a regular expression (e.g. 
“items=(\\d+)-(\\d+)”) to retrieve the individual range values.

Limiting via Query-String Parameters

For the query-string alternative to the Range header, use parameter names of offset and limit, where 
offset is the beginning item number (matches the first digit in the items string for the Range header 
above) and limit is the maximum number of items to return.  A request using query-string parameters 
that matches the example in the Range Header section above is:

GET http://api.example.com/resources?offset=0&limit=25

The offset value is zero-based, just like the items in the Range header.  The value for limit is the 
maximum number of items to return.  Services can impose their own default and maximum values for 
limit for when it's not specified in the query string.  But please document those “invisible” settings.

Note that when the query-string parameters are used, the values should override those provided in the 
Range header.

Range-Based Responses

For a range-based request, whether via Range HTTP header or query-string parameters, the server 
should respond with a Content-Range header to indicate how many items are being returned and how 
many total items exist yet to be retrieved:

Content-Range: items 0-24/66

Note that the total items available (e.g. 66 in this case) is not zero-based.  Hence, requesting the last 
few items in this data set would return a Content-Range header as follows:

Content-Range: items 40-65/66

According to the HTTP specification, it is also valid to replace the total items available (66 in this case) 
with an asterisk (“*”) if the number of items is unknown at response time, or if the calculation of that 
number is too expensive.  In this case the response header would look like this:

Content-Range: items 40-65/*

However, note that Dojo or other UI tools may not support this notation.
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Pagination

The above response-limiting schemes works for pagination by allowing requesters to specify the items 
within a dataset in which they're interested.  Using the above example where 66 total items are 
available, retrieving the second “page” of data using a page size of 25 would use a Range header as 
follows:

Range: items=25-49

Via query-string parameters, this would be equivalent to:

GET ...?offset=25&limit=25

Whereupon, the server (given our example) would return the data, along with a Content-Range header 
as follows:

Content-Range: 25-49/66

This is works great for most things.  However, occasionally there are cases where item numbers don't 
translate directly to rows in the data set.  Also, for an extremely active data set where new items are 
regularly added to the top of the list, apparent “paging issues” with what look like duplicates can occur. 

Date-ordered data sets are a common case like a Twitter feed.  While you can still page through the data 
using item numbers, sometimes it's more beneficial and understandable to use an “after” or “before” 
query-string parameter, optionally in conjunction with the Range header (or query-string parameters, 
offset and limit).

For example, to retrieve up to 20 remarks around a given timestamp:

GET http://www.example.com/remarks/home_timeline?after=<timestamp>
Range: items=0-19

GET http://www.example.com/remarks/home_timeline?before=<timestamp>
Range: items=0-19

Equivalently, using query-string parameters:

GET http://www.example.com/remarks/home_timeline?after=<timestamp>&offset=0&limit=20
GET http://www.example.com/remarks/home_timeline?before=<timestamp>&offset=0&limit=20

For timestamp formatting and handling in different cases, please see the Date Handling section below.

If a service returns a subset of data by default or a maximum number of arguments even when the 
requester does not set a Range header, have the server respond with a Content-Range header to 
communicate the limit to the client.  For example, in the home_timeline example above, that service 
call may only ever return 20 items at a time whether the requester sets the Range header or not.  In that 
case, the server should always respond with content range header such as:

Content-Range: 0-19/4125

or Content-Range: 0-19/*
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Filtering and Sorting Results

Another consideration for affecting results is the act of filtering data and/or ordering it on the server,  
retrieving a subset of data and/or in a specified order.  These concepts work in conjunction with 
pagination and results-limiting and utilize query-string parameters, filter and sort respectively, to do 
their magic.

Again, filtering and sorting are complex operations and don't need to be supported by default on all 
resources.  Document those resources that offer filtering and sorting.

Filtering

In this case, filtering is defined as reducing the number of results returned by specifying some criteria 
that must be met on the data before it is returned.  Filtering can get quite complex if services support a 
complete set of comparison operators and complex criteria matching.  However, it is quite often 
acceptable to keep things sane by supporting a simple equality, 'starts-with' or contains comparison.

Before we get started discussing what goes in the filter query-string parameter, it's important to 
understand why a single parameter vs. multiple query-string parameters is used.  Basically, it comes 
down to reducing the possibility of parameter name clashes.  We're already embracing the use of offset, 
limit, and sort (see below) parameters.  Then there's jsonp if you choose to support it, the format 
specifier and possibly after and before parameters.  And that's just the query-string parameters 
discussed in this document.  The more parameters we use on the query-string the more possibilities we 
have to have name clashes or overlap.  Using a single filter parameter minimizes that.

Plus, it's easier from the server-side to determine if filtering functionality is requested by simply 
checking for the presence of that single filter parameter. Also, as complexity of your querying 
requirements increases, this single parameter option provides more flexibility in the future—for 
creating your own fully-functional query syntax (see OData comments below or at 
http://www.odata.org).

By embracing a set of common, accepted delimiters, equality comparison can be implemented in 
straight-forward fashion. Setting the value of the filter query-string parameter to a string using those 
delimiters creates a list of name/value pairs which can be parsed easily on the server-side and utilized 
to enhance database queries as needed. The delimiters that have worked as conventions are the vertical 
bar (“|”) to separate individual filter phrases and a double colon (“::”) to separate the names and values. 
This provides a unique-enough set of delimiters to support the majority of use cases and creates a user-
readable query-string parameter. A simple example will serve to clarify the technique. Suppose we want 
to request users with the name “Todd” who live in Denver and have the title of “Grand Poobah”. The 
request URI, complete with query-string might look like this:

GET http://www.example.com/users?filter="name::todd|city::denver|title::grand poobah”

The delimiter of the double colon (“::”) separates the property name from the comparison value, 
enabling the comparison value to contain spaces—making it easier to parse the delimiter from the value 
on the server.

Note that the property names in the name/value pairs match the name of the properties that would be 
returned by the service in the payload.
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Simple but effective. Case sensitivity is certainly up for debate on a case-by-case basis, but in general, 
filtering works best when case is ignored. You can also offer wild-cards as needed using the asterisk 
(“*”) as the value portion of the name/value pair.

For queries that require more-than simple equality or wild-card comparisons, introduction of operators 
is necessary.  In this case, the operators themselves should be part of the value and parsed on the server 
side, rather than part of the property name.  When complex query-language-style functionality is 
needed, consider introducing query concept from the Open Data Protocol (OData) Filter System Query 
Option specification (see http://www.odata.org/documentation/uri-
conventions#FilterSystemQueryOption).

Sorting

For our purposes, sorting is defined as determining the order in which items in a payload are returned 
from a service.  In other words, the sort order of multiple items in a response payload.

Again, convention here says to do something simple.  The recommended approach is to utilize a sort 
query-string parameter that contains a delimited set of property names.  Behavior is, for each property 
name, sort in ascending order, and for each property prefixed with a dash (“-”) sort in descending order.  
Separate each property name with a vertical bar (“|”), which is consistent with the separation of the 
name/value pairs in filtering, above.

For example, if we want to retrieve users in order of their last name (ascending), first name (ascending) 
and hire date (descending), the request might look like this:

GET http://www.example.com/users?sort=last_name|first_name|-hire_date

Note that again the property names match the name of the properties that would be returned by the 
service in the payload.  Additionally, because of its complexity, offer sorting on a case-by-case basis for 
only resources that need it.  Small collections of resources can be ordered on the client, if needed.

Service Versioning
Straight-up, versioning is hard, arduous, difficult, fraught with heartache, even pain and extreme 
sadness--let’s just say it adds a lot of complexity to an API and possibly to the clients that access it.  
Consequently, be deliberate in your API design and make efforts to not need versioned representations.

Favor not versioning, instead of using versioning as a crutch for poor API design.  You’ll hate yourself 
in the morning if you need to version your APIs at all, let alone frequently.  Lean on the idea that with 
the advent of JSON usage for representations, clients can be tolerant to new properties appearing in a 
response without breaking.  But even that is laden with danger in certain cases, such as changing the 
meaning of an existing property with either contents or validation rules.

Inevitably there will come a time when an API requires a change to its returned or expected 
representation that will cause consumers to break and that breaking change must be avoided.  
Versioning your API is the way to avoid breaking your clients and consumers.
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Support Versioning via Content Negotiation
Historically versioning was accomplished via a version number in the URI itself, with clients indicating 
which version of a resource they desired directly in the URI they requested.  In fact, many of the “big 
boys” such as Twitter, Yammer, Facebook, Google, etc. frequently utilize version numbers in their 
URIs.  Even API management tools such as WSO2 have required version numbers in the exposed 
URLs.

This technique flies in the face of the REST constraints as it doesn't embrace the built-in header system 
of the HTTP specification, nor does it support the idea that a new URI should be added only when a 
new resource or concept is introduced--not representation changes. Another argument against it is that 
resource URIs aren't meant to change over time.  A resource is a resource.

The URI should be simply to identify the resource--not its ‘shape’.  Another concept must be used to 
specify the format of the response (representation).  That “other concept” is a pair of HTTP headers: 
Accept and Content-Type.  The Accept header allows clients to specify the media type (or types) of the 
response they desire or can support. The Content-Type header is used by both clients and servers to 
indicate the format of the request or response body, respectively.

For example, to retrieve a user in JSON format:

# Request
GET http://api.example.com/users/12345
Accept: application/json; version=1

# Response
HTTP/1.1 200 OK
Content-Type: application/json; version=1

{“id”:”12345”, “name”:”Joe DiMaggio”}

Now, to retrieve version 2 of that same resource in JSON format:

# Request
GET http  ://  api  .  example  .  com  /  users  /12345
Accept: application/json; version=2

# Response
HTTP/1.1 200 OK
Content-Type: application/json; version=2

{“id”:”12345”, “firstName”:”Joe”, “lastName”:”DiMaggio”}

Notice how the URI is the same for both versions as it identifies the resource, with the Accept header 
being used to indicate the format (and version in this case) of the desired response.  Alternatively, if the 
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client desired an XML formatted response, the Accept header would be set to ‘application/xml’ instead, 
with a version specified, if needed.

Since the Accept header can be set to allow multiple media types, in responding to the request, a server 
will set the Content-Type header on the response to the type that best matches what was requested by 
the client.  Please see http  ://  www  .  w  3.  org  /  Protocols  /  rfc  2616/  rfc  2616-  sec  14.  html for more information.

For example:
# Request
GET http  ://  api  .  example  .  com  /  users  /12345
Accept: application/json; version=1, application/xml; version=1

The above request, assuming the server supports one or both of the requested types, will either be in 
JSON or XML format, depending on which the server favors.  But whichever the server chooses, will 
be set on the Content-Type header in the response.

For example, the response from the server if it favors application/xml would be:
# Response
HTTP/1.1 200 OK
Content-Type: application/xml; version=1

<user>
<id>12345</id>
<name>Joe DiMaggio</name>

</user>
To illustrate the use of Content-Type when sending data to the server, here is an example of creating a 
new user using JSON format:

# Request
POST http  ://  api  .  example  .  com  /  users
Content-Type: application/json; version=1

{“name”:”Marco Polo”}

Or, if version 2 was in play:
# Request
POST http  ://  api  .  example  .  com  /  users
Content-Type: application/json; version=2

{“firstName”:”Marco”, “lastName”:”Polo”}
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What version is returned when no version is specified?

Supplying a version on each request is optional.  As HTTP content-negotiation follows a “best match” 
approach with content types, so should your APIs.  Using this “best match” concept, when the 
consumer does not specify a version, the API should return the oldest supported version of the 
representation.

For example, to retrieve a user in JSON format:

# Request
GET http://api.example.com/users/12345
Accept: application/json

# Response
HTTP/1.1 200 OK
Content-Type: application/json; version=1

{“id”:”12345”, “name”:”Joe DiMaggio”}

Similarly, when POSTing data to an endpoint that supports multiple versions without a version, the 
same rules as above apply--the lowest/earliest supported version is expected in the body.  To illustrate, 
here is an example of creating a new user on a multi-version endpoint using JSON format (it expects 
version 1):

# Request
POST http  ://  api  .  example  .  com  /  users
Content-Type: application/json

{“name”:”Marco Polo”}

# Response
HTTP/1.1 201 OK
Content-Type: application/json; version=1
Location: http://api.example.com/users/12345

{“id”:”12345”, “name”:”Marco Polo”}

Unsupported Versions Requested

When an unsupported version number is requested, including a resource version that has gone through 
the API deprecation lifecycle, the API should return an error response with 406 (Not Acceptable) HTTP 
status code.  In addition, the API should return a response body with Content-Type: application/json 
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that contains a JSON array of supported content types for that endpoint.

# Request
For example:
GET http  ://  api  .  example  .  com  /  users/12345
Content-Type: application/json; version=999

# Response
HTTP/1.1 406 NOT ACCEPTABLE
Content-Type: application/json

[“application/json; version=1”, “application/json; version=2”, “application/xml; version=1”, 
“application/xml; version=2”]

When Should I Create a New Version?
In API development there are many ways to break a contract and negatively impact your clients. If you 
are uncertain of the consequences of your change it is better to play it safe and consider versioning. 
There are several factors to consider when you are trying to decide if a new version is appropriate or if 
a modification of an existing representation is sufficient and acceptable. 

Changes that will break contracts

● Changing a property name (ie. “name” to “firstName”)
● Removal of property
● Changing property data type (numeric to string, boolean to bit/numeric, string to datetime, etc.)
● Validation rule change
● In Atom style links, modifying the “rel” value.
● A required resource is being introduced into an existing workflow
● Resource concept/intent change; the concept/intent or the meaning of the resource’s state has a 

different meaning from it’s original. Examples:
○ A resource with the content type text/html once meant that the representation would be a 

collection of “links” to all supported media types, new text/html representation means 
“web browser form” for user input

○ An API populating an “endTime” on the resource “.../users/{id}/exams/{id}” once 
meant the student submitted the exam at that time, the new meaning is that it will be the 
scheduled end time of the exam.

● Adding new fields that came from an existing resource with the intent to deprecate the existing 
resource. Combining two resources into one and deprecating the two original resources.

○ There are two resources, “.../users/{id}/dropboxBaskets/{id}/messages/{id}” and 
“.../users/{id}/dropboxBaskets/{id}/messages/{id}/readStatus”. The new requirement is 
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to put the properties from the readStatus resource into the individual message resource 
and deprecate the readStatus resource. This will cause the removal of a link to the 
readStatus resource in the individual messages resource.

While this list is not full-inclusive, it gives you an idea of the types of changes that will cause havoc for 
your clients and require a new resource or a new version.

Changes considered non-breaking

● New properties added to a JSON response.
● New/additional “link” to other resources.
● New content-type supported formats.
● New content-language supported formats.
● Casing is irrelevant as both the API producer and consumer should handle varied casing.

At What Level Should Versioning Occur?
It is recommended to version at the individual resource level. Some changes to an API such as 
modifying the workflow may require versioning across multiple resource to prevent breaking clients.

Use Content-Location to Enhance Responses
Optional. See RDF spec.

Links with Content-Type
Atom-style links support a 'type' property.  Provide enough information so that clients can construct 
necessary calls to specific version & content type.

Finding Out What Versions are Supported

How many versions should I support at once?

Since maintaining many versions becomes cumbersome, complex, error prone, and costly you should 
support no more than 2 versions for any given resource.

Deprecated

The term deprecated is intended to be used to communicate that a resource is still available by the API, 
but will become unavailable and no longer exist in the future. Note: The length of time in deprecation 
will be determined by the deprecation policy- not yet defined.
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How do I inform clients about deprecated resources?

Many clients will be using resources that are to be deprecated after new versions are introduced and in 
doing so, they will need ways to discover and monitor their applications use of deprecated resources. 
When a deprecated resource is requested, the API should return a normal response with the Pearson 
custom Header “Deprecated” in a boolean format. Below is an example to illustrate. 

# Request
GET http://api.example.com/users/12345
Accept: application/json
Content-Type: application/json; version=1

# Response
HTTP/1.1 200 OK
Content-Type: application/json; version=1
Deprecated: true

{“id”:”12345”, “name”:”Joe DiMaggio”}

Date/Time Handling
Dates and timestamps can be a real headache if not dealt with appropriately and consistently.  
Timezone issues can crop up easily and since dates are just strings in JSON payloads, parsing is a real 
issue if the format isn't known, consistent or specified.

Internally, services should store, process, cache, etc. such timestamps in UTC or GMT time.  This 
alleviates timezone issues with both dates and timestamps.

Date/Time Serialization In Body Content

There's an easy way around all of this—always use the same format, including the time portion (along 
with timezone information) in the string.  ISO 8601 time point format is a good solution, using the 
fully-enhanced format that includes hours, minutes, seconds and a decimal fraction of seconds (e.g. 
yyyy-MM-dd'T'HH:mm:ss.SSS'Z').  It is recommended that ISO 8601 be used for all dates represented 
in REST service body content (both requests and responses).

Incidentally, for those doing Java-based services, the DateAdapterJ library easily parses and formats 
ISO8601 dates and time points and HTTP 1.1 header (RFC 1123) formats, with its DateAdapter, 
Iso8601TimepointAdapter and HttpHeaderTimestampAdapter implementation classes, respectively.  It 
can be downloaded at https://github.com/tfredrich/DateAdapterJ.

For those creating browser-based UIs, the ECMAScript 5 specification includes parsing and creating  
ISO8601 dates in JavaScript natively, so it should be making its way into all mainstream browsers as 
we speak.  If you're supporting older browsers that don't natively parse those dates, a JavaScript library 
or fancy regular expression is in order.  A couple of sample JavaScript libraries that can parse and 
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produce ISO8601 Timepoints are:

http://momentjs.com/

http://www.datejs.com/

Date/Time Serialization In HTTP Headers

While the above recommendation works for JSON and XML content in the content of and HTTP 
request or response, the HTTP specification utilizes a different format for HTTP headers.  Specified in 
RFC 822 which was updated by RFC 1123, that format includes various date, time and date-time 
formats.  However, it is recommended to always use a timestamp format, which ends up looking like 
this in your request headers:

Sun, 06 Nov 1994 08:49:37 GMT

Unfortunately, it doesn't account for a millisecond or decimal fraction of a second in its format.  The 
Java SimpleDateFormat specifier string is:  "EEE, dd MMM yyyy HH:mm:ss 'GMT'"

Securing Services
Authentication is the act of verifying that a given request is from someone (or some system) that is 
known to the service and that the requestor is who they say they are.  While authentication is the act of 
verifying a requestor is who they say they are, authorization is verifying the requestor has permission to 
perform the requested operation.

Essentially, the process goes something like this:

1. Client makes a request, including authentication token in X-Authorization header or token 
query-string parameter in the request.

2. Service verifies presence of the authorization token, validates it (that it's valid and not expired) 
and parses or loads the authentication principal based on the token contents.

3. Service makes a call to the authorization service providing authentication principal, requested 
resource and required permission for operation.

4. If authorized, service continues with normal processing.

#3 above could be expensive, but assuming a cacheable access-control list (ACL), it is conceivable to 
create an authorization client that caches the most-recent ACLs to validate locally before making 
remote calls.

Authentication

Current best practice is to use OAuth for authentication.  OAuth2 is highly recommended, but is still in 
draft state. OAuth1 is definitely an acceptable alternative.  3-Legged OAuth is also an option for certain 
cases.  Read more about the OAuth specification at http://oauth.net/documentation/spec/.

OpenID is an additional option.  However, it is recommended that OpenID be used as an additional 
authentication option, leveraging OAuth as primary.  Read more about the OpenID specification at 
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http://openid.net/developers/specs/.

Transport Security

All authentication should use SSL. OAuth2 requires the authorization server and access token 
credentials to use TLS.

Switching between HTTP and HTTPS introduces security weaknesses and best practice is to use TLS 
by default for all communication. 

Authorization

Authorization for services is not really any different than authorization for any application.  It's based 
on the question, “Does this principal have the requested permission on the given resource?”  Given 
that simple trifecta of data  (principal, resource, and permission), it's fairly easy to construct an 
authorization service that supports the concepts.  Where Principal is the person or system who is 
granted a permission on a resource.  Using those generic concepts, it is possible to have a cacheable 
access control list (ACL) for each principal.

Application Security

The same principles in developing a secure web application holds true for RESTful services.

• Validate all input on the server. Accept “known” good input and reject bad input.
• Protect against SQL and NoSQL injection.
• Output encode data using known libraries such as Microsoft’s Anti-XSS or OWASP’s 

AntiSammy.
• Restrict the message size to the exact length of the field.
• Services should only display generic error messages.
• Consider business logic attacks. For example could an attacker skip through a multi-step 

ordering process and order a product without having to enter credit card information?
• Log suspicious activity.

RESTful Security Considerations:

• Validate JSON and XML for malformed data.
• Verbs should be restricted to the allowable method. For example, a GET request should not be 

able to delete an entity. A GET would read the entity while a DELETE would remove the entity.
• Be aware of race conditions.

API gateways can be used to monitor, throttle, and control access to the API. The following can be 
done by a gateway or by the RESTful service.

• Monitor usage of the API and know what activity is good and what falls out of normal usage 
patterns.

• Throttle API usage so that a malicious user cannot take down an API endpoint (DOS attack) and 
have the ability to block a malicious IP address.
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• Store API keys in a cryptographically secure keystore.

Caching and Scalability
Caching enhances scalability by enabling layers in the system to eliminate remote calls to retrieve 
requested data.  Services enhance cache-ability by setting headers on responses.  Unfortunately, 
caching-related headers in HTTP 1.0 are different than those in HTTP 1.1, so services should support 
both.  Below is a table of minimal headers required to support caching for GET requests, along with a 
description of appropriate values.

HTTP Header Description Example

Date Date and time the response was returned (in 
RFC1123 format).

Date: Sun, 06 Nov 1994 
08:49:37 GMT

Cache-Control The maximum number of seconds (max age) a 
response can be cached.  However, if caching is 
not supported for the response, then no-cache is 
the value.

Cache-Control: 360
Cache-Control: no-cache

Expires If max age is given, contains the timestamp (in 
RFC1123 format) for when the response expires, 
which is the value of Date (e.g. now) plus max 
age.  If caching is not supported for the response, 
this header is not present.

Expires: Sun, 06 Nov 1994 
08:49:37 GMT

Pragma When Cache-Control is 'no-cache' this header is 
also set to 'no-cache'.  Otherwise, it is not present.

Pragma: no-cache

Last-Modified The timestamp that the resource itself was 
modified last (in RFC1123 format).

Last-Modified: Sun, 06 Nov 
1994 08:49:37 GMT

To simplify, here's an example header set in response to a simple GET request on a resource that 
enables caching for one day (24 hours):

Cache-Control: 86400
Date: Wed, 29 Feb 2012 23:01:10 GMT
Last-Modified: Mon, 28 Feb 2011 13:10:14 GMT
Expires: Thu, 01 Mar 2012 23:01:10 GMT

And below is an example of a similar response that disables caching altogether:

Cache-Control: no-cache
Pragma: no-cache

The ETag Header

The ETag header is useful for validating the freshness of cached representations, as well as helping 
with conditional read and update operations (GET and PUT, respectively).  Its value is an arbitrary 
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string for the version of a representation.  However, it also should be different for each format of a 
representation—the ETag for a JSON response will be different for the same resource represented in 
XML.  The value for the ETag header can be as simple as a hash of the underlying domain object (e.g. 
Object.hashcode() in Java) with the format included in the hash.  It is recommended to return an ETag 
header for each GET (read) operation.  Additionally, make sure to surround the ETag value in double 
quotes.  For example:

ETag: "686897696a7c876b7e"
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HTTP Status Codes (Top 10)
Below are the most commonly-used HTTP status codes returned from RESTful services or APIs along 
with a brief summary of their commonly-accepted usage.  Other HTTP status codes are used 
occasionally, but are either specializations or more advanced.  Most service suites are well served by 
supporting only these, or even a sub-set.

200 (OK) – General success status code.  Most common code to indicate success.

201 (CREATED) – Successful creation occurred (via either POST or PUT).  Set the Location header to 
contain a link to the newly-created resource.  Response body content may or may not be present.

204 (NO CONTENT) – Status when wrapped responses are not used and nothing is in the body (e.g. 
DELETE).

304 (NOT MODIFIED) – Used in response to conditional GET calls to reduce band-width usage.  If 
used, must set the Date, Content-Location, Etag headers to what they would have been on a regular 
GET call.  There must be no response body.

400 (BAD REQUEST) – General error when fulfilling the request would cause an invalid state.  
Domain validation errors, missing data, etc. are some examples.

401 (UNAUTHORIZED) – Error code for a missing or invalid authentication token.

403 (FORBIDDEN) – Error code for user not authorized to perform the operation, doesn't have rights 
to access the resource, or the resource is unavailable for some reason (e.g. time constraints, etc.).

404 (NOT FOUND) – Used when the requested resource is not found, whether it doesn't exist or if 
there was a 401 or 403 that, for security reasons, the service wants to mask.

409 (CONFLICT) – Whenever a resource conflict would be caused by fulfilling the request.  
Duplicate entries, deleting root objects when cascade-delete not supported are a couple of examples.

500 (INTERNAL SERVER ERROR) – The general catch-all error when the server-side throws an 
exception.
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Additional Resources

Books

REST API Design Rulebook, Mark Masse, 2011, O’Reilly Media, Inc. 

RESTful Web Services, Leonard Richardson and Sam Ruby, 2008, O’Reilly Media, Inc. 

RESTful Web Services Cookbook, Subbu Allamaraju, 2010, O’Reilly Media, Inc. 

REST in Practice: Hypermedia and Systems Architecture, Jim Webber, et al., 2010, O’Reilly Media, 
Inc.

APIs: A Strategy Guide, Daniel Jacobson; Greg Brail; Dan Woods, 2011, O'Reilly Media, Inc.

Websites

http://www.restapitutorial.com

http://www.toddfredrich.com

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

http://www.json.org/

https://github.com/tfredrich/DateAdapterJ

http://openid.net/developers/specs/

http://oauth.net/documentation/spec/

http://www.json.org/JSONRequest.html

http://labs.omniti.com/labs/jsend

http://enable-cors.org/

http://www.odata.org/documentation/uri-conventions#FilterSystemQueryOption

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

https://developer.linkedin.com/apis

http://developers.facebook.com/docs/reference/api/

https://dev.twitter.com/docs/api

http://momentjs.com/

http://www.datejs.com/
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