

 1 Alex Pantaleev, SUNY Oswego Dept of Computer Science

CSC420

Swing Painting and Graphics

 2 Alex Pantaleev, SUNY Oswego Dept of Computer Science

Painting

 The process by which the app updates the display
 Can involve:

- Swing internal code for repainting standard components
- Some of your code, if you have custom painting

 Originates in one of two ways
- Swing/AWT libs post a repaint request
- App code posts such a request

 Posting a paint/repaint request is different from
custom painting!

 3 Alex Pantaleev, SUNY Oswego Dept of Computer Science

Painting

 In general, happens automatically
- Swing detects changes and issues repaint requests

 What happens of Swing fails to do it?
- Example: a change to an internal property controlling

translucency (as opposed to something that is part of a
component's data such as the text of a label)

 Two categories of app-controlled paint requests

 4 Alex Pantaleev, SUNY Oswego Dept of Computer Science

Asynchronous
 Tell Swing what needs to be updated
 Let Swing handle the scheduling on the EDT
 All of these are variants of Component.repaint()
 Component.repaint()

- Swing repaints the entire component
- Important: repaint requests get coalesced! (only one can be

in the EDT)
- Downside: overhead (entire component for a small change)

 Component.repaint(int x, int y, int width, int height)
- Repaint a rectangle in the component
- Again, coalesced
- repaint() == repaint(0, 0, getWidth(), getHeight())

 5 Alex Pantaleev, SUNY Oswego Dept of Computer Science

Synchronous

 Execute immediately, in the current thread
 Careful: must be on EDT!
 Jcomponent.paintImmediately(int x, int y, int w, int h)

- Does not coalesce (i.e., overhead)

 Component.paint(Graphics g)
- Execute if you want to render a component to an image (or

another non-standard Graphics object

 6 Alex Pantaleev, SUNY Oswego Dept of Computer Science

Swing Rendering
 A paint request goes on the event queue
 Sometime later the EDT dispatches it to the Swing

RepaintManager object
 That object calls paint() on the component
 The component paints first its own content, then its

border, then recurses the call to its children
 Painter's algorithm
 Jcomponent.paintComponent(Graphics)
 Component.paint(Graphics)
 JComponent.setOpaque(boolean)

 7 Alex Pantaleev, SUNY Oswego Dept of Computer Science

paintComponent()
 Override for most kinds of custom painting
 Careful: you are on the EDT!
 Example:

public class OvalComponent extends JComponent {

 public void paintComponent(Graphics g) {
 g.setColor(getBackground());
 g.fillRect(0, 0, getWidth(), getHeight());
 g.setColor(Color.GRAY);
 g.fillOval(0, 0, getWidth(), getHeight());
 }

 8 Alex Pantaleev, SUNY Oswego Dept of Computer Science

Overriding paint()

 Not a good idea, because might forget to call all
necessary functionality

 Sometimes is unavoidable, however
 Example: changing the Composite attribute of a

Graphics object to achieve translucency

 9 Alex Pantaleev, SUNY Oswego Dept of Computer Science

Opacity and setOpaque()
 Java2D opacity != Swing opacity
 Java2D opacity:

- Rendering concept
- Combination of an alpha value and a Composite mode
- Describes the degree of blending (half-translucent = half

existing color + half new color)

 Swing opacity:
- Refers to visibility
- Anything rectangular and non-translucent (Java2D sense) is

opaque
- A translucent button is not Swing-opaque
- A rounded button is not Swing-opaque
- Reason: performance (Painter's algorithm is very slow)

 10 Alex Pantaleev, SUNY Oswego Dept of Computer Science

Double-buffering

 Finally true double-buffering in Java 6 Swing
 Techique for reducing flicker
 Uses an off-screen image to render screen contents

(called a back buffer)
 At appropriate times, the back buffer is copied to the

screen (in a single operation)
 Swing benefits also because of its rendering pipeline

(opacity) – otherwise, rendering artifacts on screen

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

