
Algorithmic Complexity

Nelson Padua-Perez
Bill Pugh

Department of Computer Science
University of Maryland, College Park

Algorithm Efficiency

Efficiency
Amount of resources used by algorithm

Time, space

Measuring efficiency
Benchmarking
Asymptotic analysis

Benchmarking

Approach
Pick some desired inputs
Actually run implementation of algorithm
Measure time & space needed

Industry benchmarks
SPEC – CPU performance
MySQL – Database applications
WinStone – Windows PC applications
MediaBench – Multimedia applications
Linpack – Numerical scientific applications

Benchmarking

Advantages
Precise information for given configuration

Implementation, hardware, inputs

Disadvantages
Affected by configuration

Data sets (usually too small)
Hardware
Software

Affected by special cases (biased inputs)
Does not measure intrinsic efficiency

Asymptotic Analysis

Approach
Mathematically analyze efficiency
Calculate time as function of input size n

T ≈ O[f(n)]
T is on the order of f(n)
“Big O” notation

Advantages
Measures intrinsic efficiency
Dominates efficiency for large input sizes

Search Example

Number guessing game
Pick a number between 1…n
Guess a number
Answer “correct”, “too high”, “too low”
Repeat guesses until correct number guessed

Linear Search Algorithm

Algorithm
Guess number = 1
If incorrect, increment guess by 1
Repeat until correct

Example
Given number between 1…100
Pick 20
Guess sequence = 1, 2, 3, 4 … 20
Required 20 guesses

Linear Search Algorithm

Analysis of # of guesses needed for 1…n
If number = 1, requires 1 guess
If number = n, requires n guesses
On average, needs n/2 guesses
Time = O(n) = Linear time

Binary Search Algorithm

Algorithm
Set Δ to n/4
Guess number = n/2
If too large, guess number – Δ
If too small, guess number + Δ
Reduce Δ by ½
Repeat until correct

Binary Search Algorithm

Example
Given number between 1…100
Pick 20
Guesses =

50, Δ = 25, Answer = too large, subtract Δ
25, Δ = 12 , Answer = too large, subtract Δ
13, Δ = 6, Answer = too small, add Δ
19, Δ = 3, Answer = too small, add Δ
22, Δ = 1, Answer = too large, subtract Δ
21, Δ = 1, Answer = too large, subtract Δ
20

Required 7 guesses

Binary Search Algorithm

Analysis of # of guesses needed for 1…n
If number = n/2, requires 1 guess
If number = 1, requires log2(n) guesses
If number = n, requires log2(n) guesses
On average, needs log2(n) guesses
Time = O(log2(n)) = Log time

Search Comparison

For number between 1…100
Simple algorithm = 50 steps
Binary search algorithm = log2(n) = 7 steps

For number between 1…100,000
Simple algorithm = 50,000 steps
Binary search algorithm = log2(n) = 17 steps

Binary search is much more efficient!

Asymptotic Complexity

Comparing two linear functions

2051256512

1027128256

51564128

2593264

4n+3n/2
Running TimeSize

Asymptotic Complexity

Comparing two functions
n/2 and 4n+3 behave similarly
Run time roughly doubles as input size doubles
Run time increases linearly with input size

For large values of n
Time(2n) / Time(n) approaches exactly 2

Both are O(n) programs

Asymptotic Complexity

Comparing two log functions

489512

438256

387128

33664

5 * log2(n) + 3log2(n)
Running TimeSize

Asymptotic Complexity

Comparing two functions
log2(n) and 5 * log2(n) + 3 behave similarly
Run time roughly increases by constant as input
size doubles
Run time increases logarithmically with input size

For large values of n
Time(2n) – Time(n) approaches constant
Base of logarithm does not matter

Simply a multiplicative factor
logaN = (logbN) / (logba)

Both are O(log(n)) programs

Asymptotic Complexity

Comparing two quadratic functions

52025616

132648

40164

1642

2 n2 + 8n2
Running TimeSize

Asymptotic Complexity

Comparing two functions
n2 and 2 n2 + 8 behave similarly
Run time roughly increases by 4 as input size
doubles
Run time increases quadratically with input size

For large values of n
Time(2n) / Time(n) approaches 4

Both are O(n2) programs

Big-O Notation

Represents
Upper bound on number of steps in algorithm
Intrinsic efficiency of algorithm for large inputs

f(n)
O(…)

input size

steps

Formal Definition of Big-O

Function f(n) is Ο(g(n)) if
For some positive constants M, N0
M × g(n) ≥ f(n), for all n ≥ N0

Intuitively
For some coefficient M & all data sizes ≥ N0

M × g(n) is always greater than f(n)

Big-O Examples

5n + 1000 ⇒ O(n)
Select M = 6, N0 = 1000
For n ≥ 1000

6n ≥ 5n+1000 is always true
Example ⇒ for n = 1000

6000 ≥ 5000 +1000

Big-O Examples

2n2 + 10n + 1000 ⇒ O(n2)
Select M = 4, N0 = 100
For n ≥ 100

4n2 ≥ 2n2 + 10n + 1000 is always true
Example ⇒ for n = 100

40000 ≥ 20000 + 1000 + 1000

Observations

Big O categories
O(log(n))
O(n)
O(n2)

For large values of n
Any O(log(n)) algorithm is faster than O(n)
Any O(n) algorithm is faster than O(n2)

Asymptotic complexity is fundamental measure
of efficiency

Comparison of Complexity

Complexity Category Example

0

50

100

150

200

250

300

1 2 3 4 5 6 7

Problem Size

#
 o

f
S

o
lu

ti
o

n
 S

te
p

s

2^n

n^2

nlog(n)

n

log(n)

Complexity Category Example

1

10

100

1000

1 2 3 4 5 6 7

Problem Size

#
 o

f
S

o
lu

ti
o

n
 S

te
p

s

2^n

n^2

nlog(n)

n

log(n)

Calculating Asymptotic Complexity

As n increases
Highest complexity term dominates
Can ignore lower complexity terms

Examples
2 n + 100 ⇒ O(n)
n log(n) + 10 n ⇒ O(nlog(n))
½ n2 + 100 n ⇒ O(n2)
n3 + 100 n2 ⇒ O(n3)
1/100 2n + 100 n4 ⇒ O(2n)

Complexity Examples

2n + 100⇒ O(n)

0

100000

200000

300000

400000

500000

600000

700000

800000
1
3

4
9

1
2
0

2
6
0

5
3
3

1
0
6
8

2
1
1
8

4
1
7
5

8
2
0
8

1
6
1
1
1

3
1
6
0
2

n nlog(n) 2 n + 100

Complexity Examples

½ n log(n) + 10 n ⇒ O(nlog(n))

0

100000

200000

300000

400000

500000

600000

700000

800000

2

2
8

7
9

1
7
8

3
7
3

7
5
6

1
5
0
6

2
9
7
5

5
8
5
5

1
1
5
0
1

2
2
5
6
5

4
4
2
5
2

n nlog(n) 1/2 n log(n) + 10 n

Complexity Examples

½ n2 + 100 n ⇒ O(n2)

0

100000

200000

300000

400000

500000

600000

700000

800000

2

2
8

7
9

1
7
8

3
7
3

7
5
6

1
5
0
6

2
9
7
5

5
8
5
5

1
1
5
0
1

2
2
5
6
5

4
4
2
5
2

nlog(n) n^2 1/2 n^2 + 100 n

Complexity Examples

1/100 2n + 100 n4 ⇒ O(2n)

1

1E+15

1E+30

1E+45

1E+60

1E+75

1E+90

1E+105

1E+120

1E+135

1E+150

2 13 28 49 79 120 178 260 373 533 756

n^2 n^4 2^n 1 / 100 2^n + 100 n^4

Types of Case Analysis

Can analyze different types (cases) of algorithm
behavior
Types of analysis

Best case
Worst case
Average case

Types of Case Analysis

Best case
Smallest number of steps required
Not very useful
Example ⇒ Find item in first place checked

Types of Case Analysis

Worst case
Largest number of steps required
Useful for upper bound on worst performance

Real-time applications (e.g., multimedia)
Quality of service guarantee

Example ⇒ Find item in last place checked

Quicksort Example

Quicksort
One of the fastest comparison sorts
Frequently used in practice

Quicksort algorithm
Pick pivot value from list
Partition list into values smaller & bigger than pivot
Recursively sort both lists

Quicksort Example

Quicksort properties
Average case = O(nlog(n))
Worst case = O(n2)

Pivot ≈ smallest / largest value in list
Picking from front of nearly sorted list

Can avoid worst-case behavior
Select random pivot value

Types of Case Analysis

Average case
Number of steps required for “typical” case
Most useful metric in practice
Different approaches

Average case
Expected case
Amortized

Approaches to Average Case

Average case
Average over all possible inputs
Assumes some probability distribution, usually
uniform

Expected case
Algorithm uses randomness
Worse case over all possible input
average over all possible random values

Amortized
for all long sequences of operations
worst case total time divided by # of operations

Amortization Example

Adding numbers to end of array of size k
If array is full, allocate new array

Allocation cost is O(size of new array)
Copy over contents of existing array

Two approaches
Non-amortized

If array is full, allocate new array of size k+1
Amortized

If array is full, allocate new array of size 2k
Compare their allocation cost

Amortization Example

Non-amortized approach
Allocation cost as table grows from 1..n

Total cost ⇒ n(n+1)/2

Case analysis
Best case ⇒ allocation cost = k
Worse case ⇒ allocation cost = k
Amortized case ⇒ allocation cost = (n+1)/2

6

6

8754321Cost

8754321Size (k)

Amortization Example

Amortized approach
Allocation cost as table grows from 1..n

Total cost ⇒ 2 (n – 1)
Case analysis

Best case ⇒ allocation cost = 0
Worse case ⇒ allocation cost = 2(k – 1)
Amortized case ⇒ allocation cost = 2

An individual step might take longer, but faster
for any sequence of operations

0

6

0080402Cost

8754321Size (k)

