Algorithmic Complexity

Nelson Padua-Perez
Bill Pugh

Department of Computer Science
University of Maryland, College Park

Algorithm Efficiency

r Efficiency
E Amount of resources used by algorithm
m Time, space
¥ Measuring efficiency

B Benchmarking
E Asymptotic analysis

Benchmarking

E Approach
B Pick some desired inputs
E Actually run implementation of algorithm
E Measure time & space needed

¥ Industry benchmarks
E SPEC — CPU performance
E MySQL - Database applications
E WinStone — Windows PC applications
B MediaBench — Multimedia applications
E Linpack — Numerical scientific applications

Benchmarking

I Advantages
E Precise information for given configuration
= Implementation, hardware, inputs

r Disadvantages
E Affected by configuration
m Data sets (usually too small)
m Hardware

m Software
B Affected by special cases (biased inputs)
E Does not measure intrinsic efficiency

Asymptotic Analysis

E Approach
E Mathematically analyze efficiency
E Calculate time as function of input size n
BT =O[f(n)]
m T is on the order of f(n)
m “Big O” notation
I Advantages

B Measures intrinsic efficiency
E Dominates efficiency for large input sizes

Search Example

¥ Number guessing game
E Pick a number between 1...n
B Guess a number
E Answer “correct”, “too high”, “too low”
E Repeat guesses until correct number guessed

Linear Search Algorithm

E Algorithm
r='Guess number = 1
=<if incorrect, increment guess by 1
E«<Repeat until correct

¥ Example

Given number between 1...100
Pick 20

Guess sequence=1,2,3,4... 20

L
L
L
E Required 20 guesses

Linear Search Algorithm

E Analysis of # of guesses needed for 1...n
E If number = 1, requires 1 guess
E If number = n, requires n guesses
E On average, needs n/2 guesses
E Time=0(n)=Linear time

Binary Search Algorithm

E Algorithm
B Set A to n/4

E Guess number = n/2

E If too large, guess number — A
E If too small, guess number + A
E Reduce A by -

L

Repeat until correct

Binary Search Algorithm

¥ Example
E Given number between 1...100
E Pick 20
E Guesses =
m 50, A =25, Answer = too large, subtract A

m 25, A =12 ,Answer = too large, subtract A
m13, A=6, Answer =too small, add A
m19, A=3, Answer =too small, add A
m22,A=1, Answer =too large, subtract A
m21,A=1, Answer =too large, subtract A

m 20
E Required 7 guesses

Binary Search Algorithm

E Analysis of # of guesses needed for 1...n
E If number = n/2, requires 1 guess
E If number = 1, requires logz(n) guesses
E If number = n, requires logz(n) guesses
E On average, needs logs(n) guesses
E Time =0(logz(n))=Logtime

Search Comparison

¥ For number between 1...100
E Simple algorithm = 50 steps
E Binary search algorithm =logs(n) =7 steps

¥ For number between 1...100,000
E Simple algorithm = 50,000 steps
E Binary search algorithm =loga(n) =17 steps

F Binary search is much more efficient!

Asymptotic Complexity

¥ Comparing two linear functions

Size Running Time
n/2 4n+3
64 32 259
128 64 515
256 128 1027
512 256 2051

Asymptotic Complexity

¥ Comparing two functions

E n/2 and 4n+3 behave similarly
B Run time roughly doubles as input size doubles
E Run time increases linearly with input size

E For large values of n
E Time(2n) / Time(n) approaches exactly 2

E Both are O(n) programs

Asymptotic Complexity

F Comparing two log functions

Size Running Time
log2(n) | 5%logza(n)+3
64 6 33
128 7 38
256 8 43
512 9 48

Asymptotic Complexity

¥ Comparing two functions
E logz(n)and 5 * logz(n) + 3 behave similarly

B Run time roughly increases by constant as input
size doubles

E Run time increases logarithmically with input size

E For large values of n

E Time(2n) — Time(n) approaches constant
B Base of logarithm does not matter
= Simply a multiplicative factor
logzN = (log,N) / (logpa)
E Both are O(log(n)) programs

Asymptotic Complexity

¥ Comparing two quadratic functions

Size Running Time
n2 2n?+8
4 16
4 16 40
64 132
16 256 520

Asymptotic Complexity

¥ Comparing two functions

® n?and 2 n?2 + 8 behave similarly

B Run time roughly increases by 4 as input size
doubles

E Run time increases quadratically with input size

E For large values of n
E Time(2n) / Time(n) approaches 4

¥ Both are O(n2) programs

Big-O Notation

I Represents

E Upper bound on number of steps in algorithm
E Intrinsic efficiency of algorithm for large inputs

0(...)

f(n
steps ")

input size

Formal Definition of Big-O

E Function f(n) is O(g(n)) if
E For some positive constants M, N
E Mx g(n) =f(n), foralln = N,

E Intuitively
E For some coefficient M & all data sizes = N

m M x g(n) is always greater than f(n)

Big-O Examples

® 5n + 1000 = O(n)
B Select M =6, Ny =1000
E Forn=1000
m 6n = 5n+1000 is always true
E Example = for n =1000

= 6000 = 5000 +1000

Big-O Examples

F 2n2+10n + 1000 = O(n2)
B Select M=4,Ny,=100
E Forn=100
m4n2 = 2n2 + 10n + 1000 is always true
E Example = for n =100
= 40000 = 20000 + 1000 + 1000

Observations

k Big O categories
E O(log(n))
E O(n)
E O(n?)
E For large values of n

E Any O(log(n)) algorithm is faster than O(n)
 Any O(n) algorithm is faster than O(n?2)

E Asymptotic complexity is fundamental measure
of efficiency

Comparison of Complexity

A Comparison of Orders

Complexity Category Example

of Solution Steps

300

250

200

150

100

50

0

—%—2™n

—<- N2

—/v— nlog(n)
/z B n

-4 log(n)
/r/ X

3 4 5 6 7

Problem Size

Complexity Category Example

1000

100

of Solution Steps
=)

— ¥ 27n
—<— nM2
—/— nlog(n)
- n
—4—log(n)

3 4 5

Problem Size

Calculating Asymptotic Complexity

P As n increases

® Highest complexity term dominates
B Can ignore lower complexity terms

¥ Examples

E2n+100 = O(n)

E nlog(n)+10n => O(nlog(n))
E'%n2+100n = 0(n?)

E n3 + 100 n? = O(n3)

E 1100 2" + 100 n4 = O(2N)

Complexity Examples

E 2n + 100 = O(n)

~® - n —A—nlog(n) —=—2n+100

800000
700000

600000 fﬁ
500000 /&

400000 A{
300000

200000
100000
0 -

8208
16111 =
31602

E 2nlog(n) + 10 n = O(nlog(n))

800000

Complexity Examples

—<—n = nlog(n)

1/2 n log(n) +10 n

700000
600000

500000

400000

300000

200000
100000

0 -

FSE S S W O N e 5

N o0 (@) o0 ™ ©
N M~ M~ N~ Te]
- ™ M~

44252

Complexity Examples

¥ % n2 + 100 n = O(n2)

—® nlog(n) —»— n”2 1/2 n*2 +100 n
800000 /
700000
600000 / f
500000 %
400000 / /,
300000 / ’/
200000 /A ’//
100000 MX _J)/

0 tr, rw"w"efﬂ#&ﬁéﬁmli'ﬁ —
AN (2] o0

1506
2975
5855
11501
22565
44252

Complexity Examples

E 1/100 2" + 100 n4 = O(2")

—¢— n’2 n4 = 2™Mn - 1/1002*n +100 n*4

1E+150

1E+135
1E+120

1E+105 X

1E+90

1E+75
1E+60

1E+45

1E+30

1E+15
1 -

2 13 28 49 79 120 178 260 373 533 756

Types of Case Analysis

E Can analyze different types (cases) of algorithm
behavior

E Types of analysis
E Best case
B Worst case
E Average case

Types of Case Analysis

I Best case

E Smallest number of steps required
E Not very useful
E Example = Find item in first place checked

Types of Case Analysis

P Worst case

E Largest number of steps required
E Useful for upper bound on worst performance

m Real-time applications (e.g., multimedia)

m Quality of service guarantee
B Example = Find item in last place checked

Quicksort Example

F Quicksort

E One of the fastest comparison sorts
B Frequently used in practice

F Quicksort algorithm
E Pick pivot value from list
E Partition list into values smaller & bigger than pivot
E Recursively sort both lists

Quicksort Example

¥ Quicksort properties
E Average case = O(nlog(n))
® Worst case = O(n?)
m Pivot =~ smallest / largest value in list

m Picking from front of nearly sorted list

P Can avoid worst-case behavior
E Select random pivot value

Types of Case Analysis

I Average case

E Number of steps required for “typical” case
E Most useful metric in practice
E Different approaches

m Average case
m Expected case
= Amortized

Approaches to Average Case

I Average case
E Average over all possible inputs
B Assumes some probability distribution, usually
uniform
I Expected case
E Algorithm uses randomness
E Worse case over all possible input
B average over all possible random values

¥ Amortized

E for all long sequences of operations
E worst case total time divided by # of operations

Amortization Example

F Adding numbers to end of array of size k
E If array is full, allocate new array

m Allocation cost is O(size of new array)
E Copy over contents of existing array

¥ Two approaches
E Non-amortized
m If array is full, allocate new array of size k+1
® Amortized
m If array is full, allocate new array of size 2k
E Compare their allocation cost

Amortization Example

¥ Non-amortized approach
E Allocation cost as table grows from 1..n

Size(k)| 1 | 2 | 3| 4 | 5 | 6 | 7| 8

Cost 1 2 3 4 5 6 7 8

B Total cost = n(n+1)/2

k Case analysis
B Best case => allocation cost = k
E Worse case => allocation cost = k
E Amortized case => allocation cost = (n+1)/2

Amortization Example

¥ Amortized approach
E Allocation cost as table grows from 1..n

Size(k)| 1 | 2 | 3| 4|5 | 6|7]| 8

Cost 2 0 4 0 8 0 0 0

® Total cost =2 (n-=-1)
E Case analysis
B Best case = allocation cost =0
® Worse case => allocation cost = 2(k — 1)
B Amortized case => allocation cost = 2

¥ An individual step might take longer, but faster
for any sequence of operations

