Relations and Graphs

Graphs are Pictures of (Binary) Relations

E. Wenderholm

Department of Computer Science
SUNY Oswego

© 2016 Elaine Wenderholm All rights Reserved
Outline

1 Relation
 - A Function that returns a boolean
 - Special Properties of Relations

2 Graphs
 - A Picture of a Binary Relation
 - Types of Graphs
 - Properties of Graphs

3 Trees
 - Trees are Restricted Graphs
 - Binary Trees
A predicate (also called a property) is function $f : X_1 \times \ldots \times X_n \rightarrow boolean, n \geq 1$ that returns a boolean value.
A predicate (also called a property) is a function $f : X_1 \times \ldots \times X_n \rightarrow boolean, n \geq 1$ that returns a boolean value.

The sets can be different sets, or all the same sets.
A **predicate** (also called a **property**) is function $f : X_1 \times \ldots \times X_n \rightarrow \text{boolean}, n \geq 1$ that returns a boolean value.

- The sets can be different sets, or all the same sets.
- A predicate whose domain is a set of k-tuples (of the same set) is called a
 - k-ary relation
 - k-ary predicate
 - k-ary relation on A.
A predicate (also called a property) is function \(f : X_1 \times \ldots \times X_n \rightarrow boolean, n \geq 1 \) that returns a boolean value.

The sets can be different sets, or all the same sets.

A predicate whose domain is a set of \(k \)-tuples (of the same set) is called a

- \(k \)-ary relation
- \(k \)-ary predicate
- \(k \)-ary relation on \(A \).

A predicate defines a partition of the domain.
Predicates

Functions that return a boolean

- A **predicate** (also called a **property**) is function $f : X_1 \times \ldots \times X_n \rightarrow boolean, n \geq 1$ that returns a boolean value.

- The sets can be different sets, or all the same sets.

- A predicate whose domain is a set of k-tuples (of the same set) is called a
 - k-ary relation
 - k-ary predicate
 - k-ary relation on A.

- A predicate defines a partition of the domain. Some k-tuples are mapped to $true$; the rest are mapped to $false$.
Relations
Definitions

- \(R \subseteq A = (A_1 \times \ldots A_k) = \{(a_1, \ldots, a_k) | R(a_1, \ldots, a_k) = true\} \)
Relations

Definitions

- \(R \subseteq A = (A_1 \times \ldots A_k) = \{(a_1, \ldots, a_k)|R(a_1, \ldots, a_k) = true\} \)

 A \(k \)-ary relation \(R \) is a subset of \(A \) in which \(R \) evaluates to \textit{true}.

- If all the \(A_i \) are the same sets, we say that \(R \) is a relation \textit{on} \(A \).

- A 2-\textit{ary} relation is called a \textit{binary relation}.

- A binary relation is often written as an \textit{infix} operator.
R is some binary relation on A. We say:

- R is **reflexive** iff $\forall a \in A$, aRa.

An equivalence relation forms a partition of the domain.
R is some binary relation on A. We say:

- R is **reflexive** iff $\forall a \in A, aRa$.
- R is **symmetric** iff $\forall a, b \in A, aRb \rightarrow bRa$.

Relations

Relations with Special Properties

- \(R \) is some binary relation on \(A \). We say:
 - \(R \) is **reflexive** iff \(\forall a \in A, aRa \).
 - \(R \) is **symmetric** iff \(\forall a, b \in A, aRb \rightarrow bRa \).
 - \(R \) is **transitive** iff \(\forall a, b, c \in A, aRb \land bRc \rightarrow aRc \)
• R is some binary relation on A. We say:
 • R is reflexive iff $\forall a \in A$, aRa.
 • R is symmetric iff $\forall a, b \in A$, $aRb \rightarrow bRa$.
 • R is transitive iff $\forall a, b, c \in A$, $aRb \land bRc \rightarrow aRc$

• R is an equivalence relation if it is: reflexive, symmetric, and transitive.

• An equivalence relation forms a partition of the domain.
Take some binary relation R on A.

$R \subseteq A \times A = \{(a_1, a_2) \mid aRb \text{ is true}\}$

A Graph $G = (V, E)$ is:
Directed Graphs
A Picture of a Binary Relation

- Take some binary relation \(R \) on \(A \).
 \[R \subset A \times A = \{(a_1, a_2)|a R b \text{ is true}\} \]
- A Graph \(G = (V, E) \) is:
 - \(V \) is the set of nodes (Vertices) of the graph.
Directed Graphs
A Picture of a Binary Relation

- Take some binary relation R on A.
 \[R \subseteq A \times A = \{(a_1, a_2) | aRb \text{ is true} \} \]
- A Graph $G = (V, E)$ is:
- V is the set of nodes (Vertices) of the graph. Each node is drawn, perhaps with a dot, with it’s name.
Take some binary relation R on A.

$R \subseteq A \times A = \{(a_1, a_2) | aRb \text{ is true } \}$

A Graph $G = (V, E)$ is:

- V is the set of nodes (Vertices) of the graph. Each node is drawn, perhaps with a dot, with its name.
- E is the set of ordered pairs (Edges) for which the relation R is true.
Directed Graphs
A Picture of a Binary Relation

- Take some binary relation R on A.
 $R \subset A \times A = \{(a_1, a_2)|aRb \text{ is true}\}$
- A Graph $G = (V, E)$ is:
 - V is the set of nodes (Vertices) of the graph. Each node is drawn, perhaps with a dot, with it’s name.
 - E is the set of ordered pairs (Edges) for which the relation R is true.
 - The elements in the ordered pair are in V. Given the ordered par (a, b), it is drawn as $a \rightarrow b$.
 - A graph is **directed** if it’s edges are drawn with arrows.
Types of Graphs
Properties in Pictures

- All the edges in an **undirected graph** are drawn with straight lines, not arrows.
- An undirected graph is a picture of a symmetric relation.
- A **directed graph** has all directed edges. All edges are drawn with arrows.
- A **labeled** graph has data associated with each edge. This is typically thought of as a cost.
The **degree** of a node is the number of edges that are incident on the node.
The **degree** of a node is the number of edges that are incident on the node. The **in-degree** is the number of incoming edges to the node; the **out-degree** is the number of outgoing edges from the node.

- A **path** is a sequence of nodes connected by edges.
- A **simple path** does not visit any node more than once.
- A **cycle** is a path that starts and ends at the same node.
- A graph that contains no cyclics is called **acyclic**
All Trees are Graphs
All Graphs are not Trees

- A Tree contains no cycles.
- There is a distinguished node, called the **root** of the tree, which has no incoming edges.
- A tree is acyclic.
- There is a unique path from the root to every other node in the tree.
- A **leaf** is a node which has no outgoing edges.
- The **frontier** of a tree a sequence of the leaf nodes of the tree, written in left-to-right order.
- Trees are drawn with the root as the topmost node. Edges are directed, and drawn downward. Edges appear to be symmetric but arrow are directed downward by default.
Binary Trees
A maximum of 2 outgoing edges

All the nodes in Binary Tree have at most two outgoing edges. A Binary Tree is usually defined recursively, as follows.
All the nodes in Binary Tree have at most two outgoing edges. A Binary Tree is usually defined recursively, as follows. Basis: A *Binary Tree* is the Empty Tree.
Binary Trees
A maximum of 2 outgoing edges

All the nodes in Binary Tree have at most two outgoing edges. A Binary Tree is usually defined recursively, as follows. Basis: A *Binary Tree* is the Empty Tree. Recursion: A *Binary Tree* consists of a set of nodes V. A distinguished node R ∈ V, called the root of the tree, has no incoming nodes. The rest of the nodes, V-R, are partitioned into two subsets, called the Left Subtree of R, and the Right Subtree of R, each of which is a *Binary Tree*.