Haskell Programming Assignment Specification

In this assignment I learned how program many things in haskel. I learned list development through recursion, I
learned how higher order functions work, list comprehension, and more.

Task 1 - Mindfully Mimicking the Demo

Please engage in a Haskell session with the REPL that mimics the following session. Then, incorporate the session into
your presentation document.

blic_html/ i " ho iles 5 J ignment_5% ghci

,"more", "coffee"]

<interactive>:9:29:
parse error (possibly incorrect indentation or mismatched brackets)
head ["need","more","coffee"]
"need"
ail ["need”,"more"”,"coffee"]
offee”]

["need”, "more", "coffee"]

init ["need”,"more","coffee"]
["need", "more"
"need more coffee"
'need more coffee”
c

> 5) "Friday”

"uhoh"

blic_htm 44 'files s ignment_5%

Task 2 - Numeric Function Definitions

This task requires that you write 5 function definitions, and that you then demo them by recreating a given demo. For
this task, please add to your presentation document (1) a text containing the 5 function definitions, and (2) a text
containing a demo which is a recreation of the one that is provided. Constraint: Strive to make each function
definition as meaningful as possible, by choosing meaningful names for values (most of them, anyway), and by
writing code that illuminates, for even the most casual reader, the process by which the final value is
obtained.

Function specifications

Please refer to the demo for clarification on these specifications, as needed.

1. Define a function called squareArea, taking one real number representing the side length of a square is its sole
parameter, which returns the area of the square with the given side length.

2. Define a function called circleArea, taking one real number representing the radius of a circle is its sole parameter,
which returns the area of the circle with the given radius.

3. Imagine a cube, each face of which is blue with a centered white dot of radius one-fourth the side length of the
cube. Define a function called blueAreaOfCube, taking the length of one edge of the cube as its sole parameter,
which returns the blue area of the cube.

4. Imagine that a wooden cube is dissected into n x n x n little cubes. For such a cube, take n to be the order of the
cube. Now, suppose that such a cube of order n is painted blue, and then taken apart. How many of the little cubes
would have just one of its faces painted? Define a function called paintedCubel, taking the order of a dissected,
painted cube as its sole parameter, which returns the number of little cubes that would have just one blue face.

5. Again, imagine the painted cube scenario. Define a function called paintedCube2, taking the order of a dissected,
painted cube as its sole parameter, which returns the number of little cubes that would have exactly two blue
faces.

The given demo that you are to recreate

squareArea s
circleArea radius = pi * radius * radius

bTueArea

paintedCubel 1 = 0
paintedCubel o
where face

parameter

w.haskell.org/ghc/ :? for help

[1 of 1] iling Mai (ha.hs, interpreted)
0 one mo

squareArea
> squareArea 10

> squareArea 12

circleArea 10

G.3235)
in> blueAr

Task 3 - Puzzlers

This task requires that you write 2 function definitions, and that you then demo them by creating a “proper” demo. For
this task, please add to your presentation document (1) a text containing the 2 function definitions, and (2) a text
containing the demo that you are asked to create. What is a proper demo with respect to this task? Run each of the 2
functions with the applications that I provide in my sample demo, and then, for each of the 2 functions, add 2 applications
of your own invention. Thus, a proper demo will have 4 applications for each of the 2 functions.

Function specifications

reverseWords string = (reverse string)

gth 1ist)

) lengthList)

or help

(ha.hs, interpreted)

em tnaw"
rdLength "appa and baby yoda are the best”

WordLength "want me some coffee”

Task 4 - Recursive List Processors

This task requires that you write 3 recursive function definitions, and that you then demo them by recreating a given
demo. For this task, please add to your presentation document (1) a text containing the 3 function definitions, and
(2) a text containing a recreation of the demo that I have provided

Function specifications

Please refer to the demo for clarification on these specifications, as needed.

1. Define a recursive function called list2set, taking one list of objects as its sole parameter, which returns a list of
the objects in the given list, but with all duplicates removed.

2. Define a recursive function called isPalindrome, taking one list of objects as its sole parameter, which returns true
if the list of objects is palindromic (reads the same forwards as it does backwards).

3. Define a recursive function called collatz, taking one positive integer value as its sole parameter, which returns
the Collatz sequence corresponding to the given value as a list. (Recall that the Collatz sequence was introduced
during the “Racket” portion of this course.

The given demo that you are to recreate

ad thisHe
set newLis

stETement
Element
an firs (isPalindrome (tail (init Tis

i Int -> [Int]
[]

[num] ++ (collatz (num “div’

[num] ++ (collatz (Cnum * 3) + 1))

. VEFS10
relude> Tist

interactive»:1:2:
variable not in scope: T1i :: [Integer] -> t

(ha.hs, interpreted)

5]

isPalindrome [“"coffee"”,"latte”,"coffee"]

isPalindrome ["coffee","latte","espresso”, "coffee"]

3,5,7,11,13,11,7,5,3

3,4,2]

44,22,11,34,17,52, 0 0 4,2]

1 1tair:~/public_html/ 44Wa ite/. homeWo iles_to_send/ ignment_5%

Task 5 - List Comprehensions

This task requires that you write 2 function definitions by using list comprehensions, and that you then demo them by
creating a “proper” demo. For this task, please add to your presentation document (1) a text containing the 2 function
definitions, and (2) a text containing the demo that you are asked to create. What is a proper demo with respect to this
task? Run each of the 2 functions with the 2 applications that [provide in my sample demo, then add 2 applications of
your own invention for each of the functions. Thus, your demo will have 4 applications for each of the 2 functions.

Function specifications

Please refer to the demo for clarification on these specifications, as needed.

1. Define a function called count, taking an object and a list of objects of the same type as parameters, which returns
the number of times the object occurs in the list. Constraint: Make good use of alist comprehension in defining
this function.

2. Define a function called freqTable, taking a list of objects as its sole parameter, which returns a list of ordered pairs,
each consisting of an element of the list together with the number of times the element occurs in the list.
Constraint: Make good use of a list comprehension in defining this function. Hint: Use the list2set function
from your previous task, and the count function from this task.

The given demo that you are to augment

length [occurences | occurences < oCccurences -» occurences == a) b]

repeat [
repeat um m finallList
[myList] ++ (repeatList (num - 1) myList)

fregTable o ab
where myTab ist myCount
s 1st set t

) singleList (repeatlList (length singlelList

count ° "need more coffee”

count 4 [1,2,3,2,3,4,3,4,5,4,5,6]

Task 6 - Higher Order Functions

This task requires that you write 4 function definitions that feature higher order programming, and that you then demo
them by creating a “proper” demo. For this task, please add to your presentation document (1) a text containing the 4
function definitions, and (2) a text containing the demo that you are expected to create. What is a proper demo with

respect to this task? Run each of the 4 functions with the applications that I provide in my sample demo, and then add
2 applications of your own invention. Thus, your proper demo will have 4 applications for each of the 4 functions.

Function specifications

Please refer to the demo for clarification on these specifications, as needed.

1. Define a function called tgl, taking a positive Int value, which returns the triangular number corresponding to the
given value. That is, it returns the sum of the numbers from 1 to the given value. Constraint: Do so using the fold|
function. (Do not use the sum function.)

2. Define a function called triangleSequence, taking a positive Int value, which returns the list of triangular numbers
from 1 to the given number. Constraint: Do so using the map function, along with the tgl function.

3. Define a function called vowelCount, taking a string of lower case letters, which returns the number of vowels in
the given string. Constraint: Do so using the filter function, along with a lambda function of your own design
which returns True only if a given character is a lower case vowel.

4. Using the map function and the filter function, define a function called lcsim (for “list comprehension simulation”)
taking three parameters, a function for mapping, a predicate for filtering, and a list of elements, which returns the
same value as the following list comprehension:

[fx]|x<-xs,px]

The given demo that you are to augment

Cinput) [(tgl Ginput - 1))]

triangleSequence input = (map tagl [0,1..input])

vowelCount myString = length (fFilter { “x -> x i o'y 'u" 1 ImyString)

Tcsim function mapping elements = map function (filter mapping elements)

one module Toaded.
*Main= tgl 5

*Main= tgl 10

55

*Main= triangleSequene 10

<interactive»:4:1:
+« Variable not in scope: triangleSequene :: Integer -> t
+ Perhaps meant ‘triangleSequence’ (line 77)
in= triangl jence 10
28,36,45,55]
sence 20

vowelCount
= wvowelCount "mouse”

in> lcsim tgl odd [1..15]
1,120]
["elephant™,"Tion™, "tiger™,”

= elem { head w) "

jaguar™]

Task 7 - An Interesting Statistic: nPVI

This tasks invites you to implement the “normalized pairwise variability index” (nPVI) by making good use of zip and
map. This statistic has been used extensively in the field of lingustics, and is also used to significant effect in the field of
music cognition. In case you find yourself with a bit of time, and the inclination to see an impressive application of nPV],
you might like to spend some time with the following paper:

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1063.772&rep=rep1&type=pdf

What is the nPVI? As the name implies, it is a measure of the pairwise variability of terms in a sequence of numeric terms.
In mathematical notation, the nPVI is defined by the following expression:

100 | d,-d,,,
m -1 k=l’(dk+dk+l)/2

nPVI =

Should that seem like a lot to unpack, no worries, the plan is for you to reconstruct the nPVI expression in Haskell by
writing a sequence of functions that are consistent with the obvious deconstruction of the expression, the last of which
actually computes the nPVI for a sequence of integral values.

Please be aware of the fact that, for this little exercise in Haskell programming, the type of a function will habitually be
expressed prior to function definition, and, moreover, the type for each function will be very narrowly construed.

Task 7a - Test data

Please establish a file called npvi.hs within which to place your code for this task. Then, add a reasonable opening
comment to your file.

Please add the following lines of code to your file, with ease of testing in mind. And then, load the file, and make sure
that the variables are properly bound. Add this bit of demo to your presentation document.

: [Int]
= [1,3,6,2,5]

: [Int]
= [4,4,2,1,1,2,2,4,4,8]

: [Int]
t,9,2,8,3,7,2,8,1,9]

of 1] Compiling Main { npvi.hs, interpreted)
one module Toaded.
ain= a
5,1,3]
in> b
L .%.5.3.5]
*Main> c
4,2,1,1,2,2,4,4,8]

*Main

Task 7b - The pairwiseValues function

Write the function called pairwiseValues, taking a list of Int values as its sole parameter, which produces a list of pairs of
Int values, such that each element of the given list is paired with its successor. Please (1) place the type of this function
in your file prior to your code which defines the function, (2) make good use of the zip function and the tail function from
the standard prelude, (3) keep your code (excluding the type declaration) to just one line.

pairwiseValues
pairwiseValues

in= pair
Y 2
y L
[1,9),09,2)
*Main

Task 7c - The pairwiseDifferences function

Write the function called pairwiseDifferences, taking a list of Int values as its sole parameter, which produces a list Int
values consisting of pairwise differences of each element in the list with its successor. Please (1) place the type of this
function in your file prior to your code which defines the function, (2) make good use of the map function together with
the lambda function (\(x,y) -> x - y) and your previously written pairwiseValues function, (3) keep your code (excluding
the type declaration) to just one line.

izelDifferences ::
seDifferences myl = ¥ - v) (pairwiseValues myList)

*Main> pairwiseldifferences a
:_3|4|_E]
*Main= pairwiseDifferences b
[_3|4|_3:|
= pairwiseDifferences c
1,0,- _EIGI_q]
= pairwiselifferences u
,0,0,0,0,0,0,0]
pairwiseDifferences x
L ' |_E|5|_4|5|_E|F|_E]
*Ma1n

Task 7d - The pairwiseSums function

Write the function called pairwiseSums, taking a list of Int values as its sole parameter, which produces a list Int values
consisting of pairwise sums of each element in the list with its successor. Please (1) place the type of this function in

your file prior to your code which defines the function, (2) make good use of the map function together with the
appropriate lambda function and your previously written pairwiseValues function, (3) keep your code (excluding the
type declaration) to just one line.

= % + vy) (pairwiseValues myList)

pairwisesums a

i pairwisesums

[4,9,8,7

*Main= pairwisesums

2 3|"-'3|3|_""1'|E?'|"'- -

ain> pairwis
4,4,4,4,4,4

“Main= pairwisesums

[10,11,10,11,10,9,10,

*=Main

Task 7e - The pairwiseHalves function

In preparation for defining the featured function of this task, add the following lines of code to your file, and then test
the half function.

half :: Int -> Double half number = (fromintegral
number) /2

Write the function called pairwiseHalves, taking a list of Int values as its sole parameter, which produces a list Double
values by dividing each value in the input list by 2. Please (1) place the type of this function in your file prior to your
code which defines the function, (2) make good use of the map function together with the half function, (3) keep your
code (excluding the type declaration) to just one line.

half :: Int -> Double
half number = { fromIntegral number) |

[Double]
map half myList

“Main= pairwiseHalves [1..10]
[(0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.
“Main> pairwiseHalves u
1.0,1.0,1.0,1.0 1.0,1.0,1.0,1.
in= pai eHal
(0.5,4.5,1.0,4.0,1.5,3.5,1.0,4.0,0.5,4.5
“Mains

Task 7f - The pairwiseHalfSums function

Write the function called pairwiseHalfSums, taking a list of Int values as its sole parameter, which produces a list Double
values by dividing each pairwise sum by 2. Please (1) place the type of this function in your file prior to your code which

defines the function, (2) make good use of the pairwiseSums function and the pairwiseHalves function, (3) keep your code
(excluding the type declaration) to just one line.

-Int] — :E:ll:luh‘-l E‘]
st = pairwiseHalves (pairwiseSums mylList)

in> pairwiseHalfSums b
4,5,4.0,3.5]
in> pairwiseHal

0,6.0]
2.0,2.0]

4.5,5.0]

Task 7g - The pairwiseTermPairs function

Write the function called pairwiseTermPairs, taking a list of Int values as its sole parameter, which produces a list pairs
corresponding to the numerators/denominator in the summation of the nPVI formula. Please (1) place the type of this
function in your file prior to your code which defines the function, (2) make good use of the zip function, and the

pairwiseDifference along with the pairwiseHalfSums function, (3) keep your code (excluding the type declaration) to just
one line.

[(Int,Double)]
zip (pairwiselifferences myList) (pairwiseHalfsums myList)

pairwiseTermPairs i
-3,3.5),(4,3.0),(-2,2.0

pairwiseTermPair

E 5),(-8,5.001
*Main> |

Task 7h - The pairwiseTerms function

In preparation for defining the featured function of this task, add the following lines of code to your file, and then test
the term function, which simply transforms a given “(numerator,denomenator) pair” into an evaluated term for the
summation operation.

term :: (Int,Double) -> Double term ndPair = abs (fromiIntegral (fst ndPair) / (snd
ndPair))

Write the function called pairwiseTerms, taking a list of Int values as its sole parameter, which produces a list Double
values corresponding to the terms in the summation of the nPVI formula. Please (1) place the type of this function in
your file prior to your code which defines the function, (2) make good use of the map function together with the term
function and the pairwiseTermPairs function, (3) keep your code (excluding the type declaration) to just one line.

term :: (Int,Double) -» Double
term ndPair = abs { fromIntegral (fst ndPair) / ({ snd ndPair))

pairwis 5 i1 = [Double]
pairwis = mylLis map term (pairwiseTermPairs myList)

> pal
[0.0,0.0,0
*Mai pai

1.2,0.9090909090909091,0.8,1.1111111111111112,1.2,1.5555555555555556,1. 6]

Task 7i - The nPVI function

Simply incorporate my code for the nPVI type declaration and function definition into your file.

3
(Tength x

in= nPVI a
34920634920636
nPVI b
09523809523809
ain= nPVI ¢
3703703703703
*Main> APVI u
0.0
*Main= nPVI x
1 95316498316497

Task 8 - Historic Code: The Dit Dah Code

International Morse Code

1. The length of a dot is one unit

2. A dash is three units

3. The space between parts of the same letter is one unit
4. The space between letters is three units

5. The space between words is seven units

Ao mm Ue ¢ mm
BEmmeoeoeo Veeoeomm
Commomme We mm mm

Dumm oo Xm0 o mm

Ee Y um o mmm mmm
Foomme Zumm wmm o o
Gum mm o

Heeoooeo

| oe@

] o mum mmm

K omm o mum lo num oum mum mmm
Lommeo 20 0 mmm mmm mmm
M o - S3e e o mm mm

N mm o 40000 mm

O mum mm 500000
Pommmmue Cmmeoeocoe
Qun mum ¢ mm 7o u——oeoe
Remme Somm vum mm o o
Seee Onum mum sum mm o
T e o § § B N

Chart of the Morse code 26 letters and =
10 numerals(']

This task does not require that you write function definitions. Rather, it asks you to read some code, display some
variable bindings, and write expressions to illuminate the behavior of a collection of functions.

Haskell programmers seem to enjoy playing with famous codes when showcasing the language. No matter that the
Caesar cipher is mostly thought of as a cognitive toy of some historical interest. It still appears as a programming
example in a number of texts devoted to learning to program in Haskell. The present task honors another historically
significant code, one that once served as a very useful technology, Morse code.

The idea is for you to download a file called ditdah.hs, study it, load it into a Haskell process, and perform the following
subtasks. By doing so, perhaps you will learn a little something more about Haskell programming.

Please incorporate your successfull interactions into just one complete demo, and include the demo in your presentation
document.

Subtask 8a

(ditdah.hs, interpreted)

[Char])

[Char])

[Char])]

Subtask 8b

*Main> assoc 'b' symbols
{:Ibl !II___ _ _ _II:}

*Main> assoc 'x' symbols
{:IXI!II——— _ _ ___II:}
*Main> find 'b’

*Main> find "x'

*Main> |

Subtask 8c

addletter "b"

addword "b"

"
|.|'l

droplast3 "drop the last 3 of this'
"drop the last 3 of t"
*Main> droplast/ "drop the last 7 of this"
"drop the last 7 "

w

Subtask 8d

*Main> :t encodeletter 'm’
encodeletter 'm" :: [Char]
*Main> encodeletter 'm’

*Main> encodeletter 'g

*Main> encodeword "yay"

*Main> :t encodeword "vay"

encodeword "yay™ :: [Char]
encodeword

encodeword "yay"

*Main> :t en

encodeFloat encodemessage enumF rom enumF romThenTo
encodeletter encodeword enumF romThen enumF romTo
*Main> :t encodemessage "need more coffee”

encodemessage "need more coffee” :: [Char]

*Main> encodemessage "billy bob"

Due Date

Please complete your work on this assignment, and post your work to your web work site, by sometime on Friday,
December 10, 2021.

