c) The image featuring deterministic symmetry, takes hold of symmetry through an unusual perspective. In order to introduce my unique example of symmetry within the image I used an array of different colored rectangles with low contrast, connected at their midpoints. In order to achieve a symmetrical expression I rotated them quickly in sequence. This gives the illusion of symmetry, where as in actuality no symmetry exists. I think this is an interesting concept. Because one can argue that their individual actuality is made up of how they perceive and interpret what they view. So from this perspective symmetry is as one believes it.

This image was a trip. I had a lot of fun with it. In order to generate an image that featured deterministic symmetry I decided that I wanted to show how when an entity is in motion around an origin we perceive it as being symmetrical and whole. However once the motion halts the illusion dissipates. So I programmed this image to not be symmetrical at first glance but once it begins to move it is seen as symmetrical. This works almost like the blades of a helicopter, I have six different colored long rectangles that all meet at their midpoints and are equidistant from each other. They run on a cycle created by a loop in the top processing. Then to give the illusion that the rectangles are rotating like the blades of a helicopter I added a seventh rectangle that was white. This white rectangle blocked a colored rectangle once each during each revolution. Through these revolutions it makes the rectangles look the same on one side as they do on the other.

If I were to change anything about this program I would want to make the rectangles a little wider and try to play with adding more rectangles into the revolution. I might also think about changing the colors so that they have greater contrast. However that would affect the symmetry of the image while in motion adversely.