First Racket Programming Assignment Solution

During this assignment I was introduced to the Racket language and the DrRacket PDE. I performed various mathematical functions, graphically displayed shapes in the PDE, and calculated the area of multiple overlapping shapes.

Simple Numeric Processing

(a) >5

5
>5.3
5.3
$>\left(\begin{array}{ll}* & 10\end{array}\right)$
30
$>\left(+\quad\left(\begin{array}{lll}* & 10 & \text { 4) }\end{array}\right.\right.$
34
> (* $9.9 \begin{array}{lllllllllllllllll}* & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 \\ 9 & 9)\end{array}$ 12157665459056928801
$>$

Solution to the Scrap Problem

The Scrap Problem: A circular disk of maximal size if cut from a square piece of tin of size 100 units. What is the area of the scrap?
(b) $>\mathrm{pi}$

$$
3.141592653589793
$$

> (define side 100)
> side
100
> (define square-area (* side side))
> square-area
10000
> (define radius (/ side 2))
$>$ radius
50
> (define circle-area (* pi radius radius))
> circle-area
7853.981633974483
> (define scrap-area (- square-area circle-area))
> scrap-area
2146.018366025517
$>$

Illustration of Scrap Problem Situation

(c)

```
> (require 2htdp/image)
> (define side 100)
> (define the-square (square side "solid" "silver"))
> the-square
> (define radius (/ side 2))
> (define the-circle (circle radius "solid" "white"))
> (define the-image (overlay the-circle the-square))
> the-image
```


Illustration of the Target Problem Situation

The Target: A "target" consists of a red disc of some diameter, containing a blue disc of diameter $3 / 4$ that of the bigger disc, which, in turn, contains another red disc, this one of diameter $1 / 7$ that of the biggest disc.
(d) $>$ (require $2 \mathrm{htdp} /$ image)
$>$ (define (target reference)
(define big-red-disk (circle reference "solid" "red"))
(define blue-disk (circle (* reference 0.75) "solid" "blue"))
(define small-red-disk (circle (* reference (/ 1 7)) "solid" "red"))
(display (overlay (overlay small-red-disk blue-disk) big-red-disk))
)
$>$ (target 100)

Solution to Target Problem

Target Problem: What percentage of the target is red?
(e) > (define diameter 100)

```
> (define target-area (* pi (/ diameter 2) (/ diameter 2)))
```

 \(>\) (define small-red-area (* pi (/ (* diameter (/ 1 7)) 2) (/ (* diameter (/ 1 7)) 2)))
 \(>\) (define blue-area (- (* pi (/ (* diameter 0.75) 2) (/ (* diameter 0.75) 2)) small-red-area))
 \(>\) (define result (\(\sim\) \# \#:precision \({ }^{\prime}(=2)\) (100 (* (/ blue-area target-area) 100))))
 \(>\) (display (string-append " \(\backslash\) nThe target is: " result " \(\%\) red \(\backslash n\) "))
 The target is: \(45.79 \%\) red
 \(>\)