Second Prolog Programming Assignment Solution

This assignment served as an exercise in state space problem solving. We wrote predicates for a
program that solves the Tower of Hanoi problem with three, four, or five disks. The program
recursively iterates every possible move until a solution is found.

Task 3: One Move Predicate and a Unit Test

Code:
ml2 | [TowerlBefore, Tower2Before, Tower3], [Towerlafter, Tower2after, Tower3]) :-
TowerlBefore = [H|T],
Towerlhfter = T,
Tower2Before = L,
Tower2hfter = [H|L].

test ml2 :-
write |('Testing: mnve_mlzkn'],
TowersBefore = [[t,3,m, 1, 0], []1,[]11]~,
trace('', '"TowersBefore', TowersBefore),
ml2 (TowersBefore, TowersAfter),

trace ("', '"TowersAfter',TowersAfter) .

Demo:

T— test__mlZ.

Testing: move_ml2

TowersBefore = [[t.=.m.1.h].[].[]]
Towersifter = [[=.m.1.h].[t].[]]
trus.

- 1

Task 4: The Remaining Five Move Predicates and Unit Tests

Code:
ml2 ([TowerlBefore, TowerZBefore, Tower3], [TowerlAfter, TowerZhifter, Tower3])
TowerlBefore = [H|T],
Towerlafter = T,
TowerZzBefore = L,
TowerZ2after = [H|L].

ml3([TowerlBefore, Tower2, Tower3Before], [TowerlAfter, TowerZ, Tower3Aafter])

TowerlBefore = [H|T],
Towerlafter = T,
Tower3Before = L,
Tower3after = [H|L].

w2l ([TowerlBefore, TowerZBefore, Tower3], [TowerlAfter, TowerZhfter, Tower3])

TowerZzBefore = [H|T],
TowerZafter = T,
TowerlBefore = L,
Towerlafter = [H|L].

m23 ([[Towerl, TowerZBefore, Tower3Before], [Towerl, TowerZAfter, Tower3after])

TowerZzBefore = [H|T],
TowerZafter = T,
Tower3Before = L,
Tower3after = [H|L].

m3l([TowerlBefore, Tower2, Tower3iBefore], [TowerlAfter, Tower2, Tower3After])

Tower3Before = [H|T],
Tower3hafter = T,
TowerlBefore = L,
Towerlafter = [H|L].

m32 [[Towerl, TowerZBefore, Tower3Before], [Towerl, TowerZAfter, Tower3After])

Tower3Before = [H|T],
Tower3hafter = T,
TowerZ2Before = L,

TowerZ2After = [H|L].

test mlZ -
write('Testing: muve_mlzkn'],
TowersBefore = [[t,3,m,, 1, 0], (1,011~

trace('', 'TowersBefore',TowersBefore),

mlZ (TowersBefore, Towersafter),

trace('', 'TowersAfter', Towersafter).
test ml3 -

write('Testing: mDVE_mlE\n'],
TowersBefore = [[t,3,m,, 1, 0], (1,011~

trace('', 'TowersBefore',TowersBefore),

ml3 (TowersBefore, Towersafter),

trace('', 'TowersAfter', Towersafter).
test m2l -

write('Testing: muve_mzl\n'],
TowersBefore = [[s,m,1,0h],[t],[]11~

trace('', 'TowersBefore',TowersBefore),

m2l (TowersBefore, Towersafter),

trace('', 'Towersafter', Towersafter).
test m23 -

write('Testing: mDVE_mEE\n'],
TowersBefore = [[s,m,1,0h],[t],[]11~

trace('', 'TowersBefore',TowersBefore),

m23 (TowersBefore, Towersafter),

trace('', 'Towersafter', Towersafter).
test m31 :-

write('Testing: mDVE_mEl\n'],
TowersBefore = [[s,m,1,h],[1,0t]11,

trace('', 'TowersBefore',TowersBefore),

m3l (TowersBefore, Towersafter),

trace('', 'Towersafter', Towersafter).
test m3Z2 -

write('Testing: mDVE_mEZ\n'],
TowersBefore = [[s,m, 1, h],[],[t]11~,
trace('', 'TowersBefore',TowersBefore),
m3Z2 (TowersBefore, Towersafter),
trace('', 'Towersafter', Towersafter).

Demo:

T— test__mlZ.

Testing: move_mlz2

Towersbefore = [[t.=.m.1l.k].[].[]]
TowersAfter = [[s.m.1.h].[t].[]1]
true.

T— test__ml3.

Testing: move_ml3
TowersBefore = [[t.=.m.1.h].[]
TowersAfter = [[s.m.1.h].[].[t]
true.

T— test__mll.

Testing: move_m2l
TowersBefore = [[=.m.1.h].[
TowersAfter = [[t.=.m.1.h].
true.

/ot

Y- test__ms3.

Testing: move_m23

TowersBefore = [[s.m.1.h].[t].[]
Towershfter = [[=.m.1.h].[].[t]]
trus=.

?— test__m3l.

Testing: move_m3l

TowersBefore = [[s.m.1. h].[].[t
Towersifter = [[t.=.m.1. h].[].[
true.

T— test_ m3dd.

Testing: move_m3Z2
TowersBefore = [[s=.m.1.k].[]
Towershfter = [[s.m.1.h].[t]
trues.

e |

SLt]]
(1]

Task 5: Valid State Predicate and Unit Test

Code:

% ——— walid state(3) :: 5 is a walid state
allowed([]) .

allowed([t]) .
allowed([=]) .
allowed([m]) .
allowed([1]) .
allowed([R]) .

allowed([t,=]) .
allowed([s,m]) .
allowed([m,1]) .
allowed([1,h]).
allowed([m,h]) .
allowed([s,R]) .
allowed([t,R]) .
allowed([3,1]) .
allowed([t,1]) .
allowed([t,m]) .

allowed([m,1,R1]).
allowed([=,1,1]).
allowed([t,1l,h]).
allowed([s,m,1]) .
allowed([t,m,1]) .
allowed([t,3,01]).
allowed([s,m,1]) .
allowed([t,m,1]) .
allowed([t,3,1]) .
allowed([t,3,m]) .

allowed([t,3,m,1]) .
allowed([=s,m,1,1]).
allowed([t,3,m,1]) .
allowed([t,m, 1, 1]).
allowed([t,=s,1,h]).

allowed([t,s,m, 1, 1h]).

valid state ([Towerl,Tower2,Tower3]) :-
allowed(Towerl) ,
allowed (Towerl) ,
allowed (Tower3) .

test walid state :-

write ('Testing: valid_state\n'},
test_ wvs([[l,t,s,mn],[],[11),
test_ wvs([[t,s,m1,0],[],[11),
test_ vs([[],[h,t,s,m], [1]]},
test_ ws([[],[t,s,mnu], [1]]},
test_ ws([[],[Rr],[l,m s, E]]},
test_ ws([[],[Rr],[C,5,m1]]}.

test_ v=(3) :-
wvalid state (3},
write (5), write(' is walid.'), mnl.

test_ v=(3) :-
write (5), write(' is inwvalid.'), mnl.

Demo:

T— test_ walid_=state.
Testing: walid_state

[[1.t.=2.m.h].[].[]1] i= inwalid.
[[t.=.m.1 . h].[1.[]] i= walid.
[[].[h.t.=.m].[1]] i= inwalid
[[].[t.=.m.h].[1]] i=s walid.
[[]1.[k].[l.m.=.t]] i= inwalid
[[].[k].[t.=.m.1]] i= walid.
true

-1

Code:
B -
% -—— write_ segquence_reversed(5) :: Write the seguence, given by 5,
% --- expanding the tokens into meaningful strings.

write_solution(5) :-
nl, write('Solution ..."), nl, nl,
reverse (5,R),
write_seguence (R) ,nl.

move (ml2) :-—

write ('Transfer a disk from tower 1 to tower

move (m21) :—

write('Transfer a disk from tower 2 to tower

move (m3l) -

write ('Transfer a disk from tower 3 to tower

move (ml3) :—

write ('Transfer a disk from tower 1 to tower

move (m23) -

write ('Transfer a disk from tower 2 to tower

move (m32) -

write('Transfer a disk from tower 3 to tower

write_sequence ([]).

write_segquence (R) -

R = [HI|T],

move (H) ,
T— test___write_sequehce.
First test of write_segquence

Transfer a disk from tower 3 to
Tranzfer a disk from tower 1 to
Transfer a disk from tower 1 tao
Transfer a disk from tower 2 to
Second test of write_sequence

Transfer a disk from tower 1 to
Transfer a disk from tower 1 to
Transfer a disk from tower 3 to
Transfer a disk from tower 1 to
Tran=zfer a disk from tower 2 to
Transfer a disk from tower 2 to
Transfer a disk from tower 1 to
trus.

- 1

2.'),nl.

1.'),nl.

1.'),nl.

3.'),nl.

3.'),nl.

2.'),nl.

tower
Lowver
Lower
Lower

Lower
Lowver
Lowver
tower
Lowver
Lower
Lower

[l TN R

[ER PN TR L S R]

Demo:

Task 7: Run the program to solve the 3 disk problem

Output:

Move = m2l

HextState = [[=].[m.1].[]]

Hove = m23

HextState = [[].[m.1].[=]]

Hove = ml3

HextState = [[].[m.1].[=]]

Hove = m2l

HextState = [[m.=].[1]1.[]11

Hove = m23

HextState = [[=].[1]1.[m]]

Hove = m32

HextState = [[].[=.m.1].[]1]

PathSoFar = [[[=.n, 1].[].[]

]] [[11.[1.[=.m]).00].010.1
11.011.[[=.m]. [11.01]. [[m].

Hove = m2l

HextState = [[=].[m.1].[]]

PathSoFar = [[[=.m.1].[1.[]

11.[[L1.[1. [=.m]]. [[].[11.1

11.011.[[=.m].[11.011. [[n].

1.[m.11.0111]

Hove = ml2

He=xtState = [[].[=.m.1].[]1]

Hove = ml3

HextState = [[].[m.1].[=]]

Hove = m21

HextState = [[m.=].[1].[]1]

Hove = m23

HextState = [[=].[1].[m]]

Hove = m23

HextState = [[1.[n.1].[=]11]

Hove = ml3

HextState = [[1.[1].[n.=]]

Hove = m2l

HextState = [[1.m].[].[=]11]

Hove = m3

HextState = [[n].[]1.[1.=]11]

Hove = m3l

HextState = [[=.m].[1].[]]

Hove = m32

HextState = [[m].[=.1].[1]]

Hove = m2l

HextState = [[l.=.m].[].[]]

Hove = m23

HextState = [[=.m].[].[1]1]

PathSoFar = [[[=.n,1].[].01]

]] [[11.[1.[=.m]).[[].[1].[=
11.011.[[=.m].[11.011.[[=.m]

Hove = ml2

HextState = [[m].[=].[11]

PathSoFar = [[[=.m.1].[].[]11]

11.[0L1.0). [=.m]]. [[].[1].[=

11.011.[[=.m].[11.011.[[=.m]

Hove = ml

HextState = [[]1.[m.=].[111

Howve = ml3

HextState = [[]1.[=].[n.1]]

PathSoFar = [[[s.m.1].[1.[11

]],[[l] [1.[=.n]1].[[].[1].[=
11.011.[[=.m].[1]1.011.[[=.m]

Hove = m21

HextState = [[=].[].[m.1]]

PathSoFar = [[[=.m.1].[1.[]11]

11.[011.[1. [=.n]]. [[].[1].[=.

11.011.[[=.m].[1].01].[[=.m]
[1.[n.11]]

Hove = ml2

HextState = [[]1.[=].[n.1]]

Hove = ml3

HextState = [[1.[1.[=.m.11]

PathSoFar = [[[=.m.1].[].[]]

]] [[11.01.[=.m]1).0[1.[1].[=
11.0]1.[[=.m].[1].[1].[[=.m]
L1 I 111 001 0) . [=.m, 10101

SolutionSoFar = [m12.ml13.m21

13]

Solution ...

Transfer a disk from tower 1

Tran=sfer a disk from tower 1

Transfer a disk from tower 2

Tran=sfer a disk from tower 1

Tran=sfer a disk from tower 1

Tran=sfer a disk from tower 3

Tran=sfer a disk from tower 1

Tran=fer a di=sk from tower 3

Transfer a disk from tower 2

Tran=fer a di=sk from tower 2

Tran=sfer a disk from tower 1

Tran=fer a di=sk from tower 1

Tran=sfer a disk from tower 2

Transfer a disk from tower 1

true

to
to
to
to
to
to
to
to
to
to
to
to
to
to

tower
tower
tover
tower
tover
tower
tover
tower
tover
tower
tower
tower
tower
tower

(TR o TR TR el el SR el (S SR PR]

13 mlZ2 w3l ml2 m3l.m2l. o m23 . ml2. ml3 . n2l.m

Solution

Tran=sfer
Tranz=fer
Tran=fer
Tran=sfer
Transfer
Tran=fer
Tran=sfer
Tran=fer
Tran=sfer
Tranz=fer
Tran=fer
Tran=sfer
Transfer
Tran=fer

tru=

[LT U T v v T 1 U T U T T 1 1]

disk
disl
disk
dislk
dislk
disk
dislk
dislk
disk
disl
disk
dislk
dislk
disk

from
from
f rom
f rom
f rom
f rom
f rom
f rom
from
from
f rom
f rom
f rom
f rom

Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower

e Lt R N N TR R e e o

Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower
Lower

WHWPRWHFFMFME RO Wk

Output 2:

1. What was the length of your program’s solution to the three disk problem?
14 moves

2. What is the length of the shortest solution to the three disk problem?
7 moves

3. How do you account for the discrepancy?

The program is not designed to find the shortest solution, it simply iterates through all of
them until it meets the end goal state.

Task 8: Run the program to solve the 4 disk problem

Demo:

Solution

to tower
to tower
to tower

di=zk from tower
di=zk from tower
di=zk from tower

Tran=fer
Tran=fer
Tran=fer

Tranzfer a disk from towver 1 to tower 2.
Tranzfer a disk from towver 1 to tower 3.
Tranzfer a disk from tower 2 to tower 1.
Tranzfer a disk from towver 1 to tower 3.
Tranzfer a disk from towver 1 to tower 2.
Tranzfer a disk from towver 3 to tower 1.
Tranzfer a disk from towver 1 to tower 2.
Tran=fer a di=sk from tower 3 to tower 1.
Tranzfer a disk from towver 2 to tower 1.
Tranzfer a disk from towver 1 to tower 3.
Tranzfer a disk from towver 1 to tower 2.
Tranzfer a disk from towver 3 to tower 1.
Trans=fer a di=sk from tower 1 to tower 2.
Tranzfer a disk from towver 1 to tower 3.
Tranzfer a disk from towver 2 to tower 1.
Tranzfer a disk from towver 1 to tower 3.
Tranzfer a disk from towver 2 to tower 1.
Tran=fer a di=sk from tower 3 to tower 1.
Tranzfer a disk from towver 1 to tower 2.
Tranzfer a disk from towver 1 to tower 3.
Tranzfer a disk from towver 2 to tower 1.
Tranzfer a disk from towver 1 to tower 3.
Tranzfer a disk from towver 2 to tower 1.
Tranzfer a disk from towver 3 to tower 1.
Tranzfer a disk from towver 1 to tower 2.
Tranzfer a disk from towver 3 to tower 1.
Tran=fer a disk from tower 2 to tower 1.
Tranzfer a disk from towver 1 to tower 3.
Tranzfer a disk from towver 1 to tower 2.
Tranzfer a disk from towver 3 to tower 1.
Tranzfer a disk from towver 1 to tower 2.
Tran=fer a di=sk from tower 1 to tower 3.
Tranzfer a disk from towver 2 to tower 1.
Tranzfer a disk from towver 1 to tower 3.
Tranzfer a disk from towver 2 to tower 1.
Tranzfer a disk from towver 3 to tower 1.
Trans=fer a di=sk from tower 1 to tower 2.

a 1 3.

a 2 1.

a 1 3.

true

1. What was the length of your program’s solution to the four disk problem?
40 moves.
2. What is the length of the shortest solution?

15 moves

Task 9: Review your code and archive it

% ___

% ——— File: towers_of hanoi.pro

% ——— Line: Program to solve the Towers of Hanoi problem

% ___
- consult ('inspector.pl').

B

¥ —-—— make move (5,T,550) Make a move from state 5 to state T by 550

make move (TowersBeforeMove, TowershfterMove, ml2) :-
ml2 (TowersBeforeMove, TowersAfterMove) .

make move (TowersBeforeMove, TowershfterMove, ml3)
ml3 (TowersBeforeMove, TowersAfterMove) .

make move (TowersBeforeMove, TowershfterMove, m2l)
m2l (TowersBeforeMove, TowersAfterMove) .

make move (TowersBeforeMove, TowershfterMove, m23)
m23 (TowersBeforeMove, TowersAfterMove) .

make move (TowersBeforeMove, TowershfterMove, m3l)
m3l (TowersBeforeMove, TowersAfterMove) .

make move (TowersBeforeMove, TowershfterMove, m32)
m32 (TowersBeforeMove, TowersAfterMove) .

mlz2 ([TowerlBefore, TowerZBefore, Tower3], [Towerlafter, Tower2hfter, Tower3])

TowerlBefore = [H|T],
Towerlafter = T,
TowerZ2Before = L,
TowerZhfter = [H|L].

ml3([TowerlBefore, Tower2, Tower3Before], [Towerlhifter, Tower2, Tower3hfter])

TowerlBefore = [H|T],
Towerlafter = T,
Tower3Before = L,
Tower3nafter = [H|L].

m2l [[TowerlBefore, TowerZ2Before, Tower3], [TowerlAfter, Tower2hifter, Tower3])

TowerZ2Before = [H|T],
TowerZhfter = T,
TowerlBefore = L,
Towerlhfter = [H|L].

m23([Towerl, TowerZ2Before, Tower3Before], [Towerl, Tower2After, Tower3after])

Tower2Before = [H|T],
Tower2hfter = T,
Tower3Before = L,
Tower3hfter = [H|L].

m3l ({ [TowerlBefore, Tower2, Tower3Before], [TowerlAfter, Tower2, Tower3after])

Tower3Before = [H|T],
Tower3nafter = T,
TowerlBefore = L,
Towerlhafter = [H|L].

m32 [[Towerl, Tower2Before, Tower3Before], [Towerl, Tower2After, Tower3after])

Tower3Before = [H|T],
Tower3nafter = T,
Tower2Before = L,
Tower2hfter = [H|L].

% -—- walid state(5) :: 5 is a wvalid state
allowed([]) -

allowed{[t]) .
allowed({[=]) .
allowed | [m]) .
allowed({[1]) .
allowed{[R]).

allowed([t,=]) .-
allowed|([s,m]) .
allowed | [m,1]) .
allowed([1,R]).
allowed | [m,]} .
allowed|([=s,h]) .
allowed([t,]} .
allowed([=s,1]) .
allowed([t,1]) .
allowed([t,m]) .

allowed([m,1,h]).
allowed([s,1,h]).
allowed([t,1,Rh]).
allowed([s,m,]} .
allowed([t,m,]} .
allowed([t,=s,h]).
allowed([s,m,1]) .
allowed([t,m,1]) .
allowed([t,=s,1]) .
allowed([t,=s,m]) .

allowed([t,s,m,1]) .
allowed([s,m,1,h]}).
allowed([t,s,m,]} .
allowed([tc,m,1, 1]} .
allowed([t,s,1,h]).

allowed([t,s,m, 1, 1])}.

walid state([Towerl,Towsr2,Tower3]) :-
allowed(Towerl),
allowed(Towerd),
allowed(Tower3) .

% -——— solve(5tart,Sclution) :: succeeds if Solution represents a path
% ——— from the start state to the goal state.
solve -

extend path([[[s,m 1, 0], [1,[]11],[],50lution),
write solution(Sclution).

extend path(PathSoFar, SolutionScFar, Sclution) -
PathSoFar = [[[],[],[s,m,1,0R]]I_1,
showr ('PathSoFar', PathSoFar),
showr | "SolutionS5oFar', SolutionSoFar) ,
Solution = SolutionSoFar.

extend path (PathSoFar, SolutionScFar, Sclution) -
PathSoFar = [CurrentState|],
showr ('PathSoFar', PathSoFar) .,
make move (CurrentState,NextState,Move),
show { "Move ', Move) ,
show | "NextState', HextState),
not (member (HextState, PathSoFar)),
valid state (HextState),
Path = [HNextState|PathSoFar].,
Soln [Move | SolutionSoFar],
extend path(Path, Soln, Solution).

% ___
% -—- wWrite sequence_reversed(5) :: Write the segquence, given by 5,

% —-—— expanding the tokens into meaningful strings.

write solution(3) :-

nl, write{'Solution ..."}), nl, nl,
reverse (5,R) .,
write segquence (R} ,nl.

move (ml2) :-—

write ('Transfer a disk from tower 1 to tower 2.'"),.nl.
move (m2l) -
write|'Transfer a disk from tower 2 to tower 1.'),nl.

move (m3l) :-—

write ('Transfer a disk from tower 3 to tower 1.'),ml.
move (ml3) -

write ('Transfer a disk from towser 1 to tower 3.'),.nl.
move (m23) -

write('Transfer a disk from tower 2 to tower 3.'),nl.
move (m32) -

write ('Transfer a disk from tower 3 to tower 2.'),nl.

write sequence([]).

write sequence (R) :-
E = [HIT],
mowve (H) ,
write sequence (T).

test write Fequence -

wWrite('First test of write seguence ...'"), nl,
write sequence ([m31,ml2, ml3, m21]),
write ("Second test of write sequence ...'}, nl,

write sequence ([ml3, ml2, m32,ml3, m2], m23 ml3]).

% ——— Unit test programs

test_ ml2 :-
write ("'Testing: mnve_mlzkn'],
TowersBefore = [[t,=s,m, 1, 0],.[1,-0[11-

trace('', '"TowersBefore',TowersBefore),

ml2 (TowersBefore, Towershfter),

trace('', '"Towershfter' , Towershfter).
test_ ml3 :-

write ("'Testing: mnve_ml3kn'],
TowersBefore = [[t,=s,m, 1, 0],.[1,-0[11-

trace('', '"TowersBefore', TowersBefore),

ml3 (TowersBefore, Towershfter),

trace('', '"Towershfter', Towershfter) .
test m2l :-

write ("Testing: mnve_mzl\n'],
TowersBefore = [[s,m,1,.h],[t]1,[11~-

trace('', '"TowersBefore', TowersBefore),

m2l (TowersBefore, Towershfter),

trace('', '"Towershfter', Towershfter) .
test_ m23 -

write ("Testing: mDVE_mEB\n'],
TowersBefore = [[s,m,1,.h],[t]1,[11~-

trace('', '"TowersBefore', TowersBefore),

m23 (TowersBefore, Towershfter),

trace('', '"Towershfter', Towershfter) .
test m3l :-

write ('Testing: mDVE_mEl\n'j,
TowersBefore = [[3,m,1,h],[]1,[E]1]-

trace('", "TowersBefore', TowersBefore),

m3l (TowersBefore, Towersifter),

trace ("', "TowershAfter',Towersifter) .
test m32 :-

write ('Testing: mDVE_mEZ\n'j,
TowersBefore = [[3,m,1,h],[]1,[E]1]-

trace('", "TowersBefore', TowersBefore),
m32 (TowersBefore, Towersifter),
trace ("', "TowershAfter',Towersifter) .

test walid state -

write ('Testing: valid_state\n'j,
test_ ws([[l,t,s,mn],[1,[11}),
test_ wvs([[t,s,m,1,0], (1,011},
test_ wvs([[I1.[h,t,s,m],[111},
test_ wvs([[I1.[c,s,m,0],[1]11),
test_ wvs([[I1,[R],[1,m,s,E]11),
test_ ws([[1.[R],[C,5,m 1]}

test_ vs=(3) :-
valid state (5},
write (5), writce (' is walid.'), nl.

test_ vs=(3) :-
write (5), write (' is inwvalid.'), nl.

