
The runtime stack and the heap are two ways a program can store memory. It is important to
learn and understand the difference between the two and when you want to explicitly use one over the
other. This will give you performance and memory advantages.

The runtime stack stores local non-static variables in a Last-In-First-Out (LIFO) configuration.
This means that the most recent element to be added to the stack is the one that’s used first. The stack is
a linear structure and must be accessed in order. Each process/thread can have it’s own stack.

A heap is different, it is used dynamically. There is no clear order or rules that must be followed.
You can allocate and free any block of memory at will.

Garbage collection is a concept that allows programmers to avoid having to manually manage memory.
This brings about several advantages, and also disadvantages.

Today, there are really only two “big” languages that require explicit memory management: C
and C++. The programmers must use functions like “malloc”, “free”, “delete” in order for the system to
release allocated memory, even if the memory will never again be accessed or is now out of scope.

Most modern languages instead take care of all memory management through garbage
collection. Two easy examples are Java and Rust. Neither languages requires the user to allocate
memory or free memory.

1. Rust is also made to be more performant in general. It strives to be like C/C++, perhaps the
most performant of all mainstream languages.

2. Rust still has a lot in common with Haskell! Both languages embrace strong type systems.
3. We see braces used to delimit the function body, and a semicolon at the end of the statement.
4.

• Floating point types f32 and f64.

• Booleans (bool)

• Characters (char). Note these can represent unicode scalar values (i.e. beyond ASCII)

• Various sizes of integers, signed and unsigned (i32, u8, etc.)

5. The main distinction between primitives and other types is that primitives have a fixed size.
This means they are always stored on the stack. Other types with variable size must go into
heap memory.

6. While variables are statically typed, it is typically unnecessary to state the type of the variable.
This is because Rust has type inference, like Haskell

7. Another big similarity is that variables are immutable by default. Once the x value gets
assigned its value, we can't assign another! We can change this behavior though by specifying
the mut (mutable) keyword.

8. We can also specify a return type using the arrow operator →
9. Expressions return values. Function calls are expressions. Block statements enclosed in braces

are expressions.
10. Rust has simple compound types like tuples and arrays (vs. lists for Haskell). These arrays are

more like static arrays in C++ though. This means they have a fixed size.

• 1. We declare variables within a certain scope, like a for-loop or a function definition. When
that block of code ends, the variable is out of scope. We can no longer access it.

• 2. Another important thing to understand about primitive types is that we can copy them. Since
they have a fixed size, and live on the stack, copying should be inexpensive.

• 3. String literals don't give us a complete string type. They have a fixed size. So even if we
declare them as mutable, we can't do certain operations like append another string. This would
change how much memory they use!

• 4. What's cool is that once our string does go out of scope, Rust handles cleaning up the heap
memory for it! We don't need to call delete as we would in C++. We define memory cleanup
for an object by declaring the drop function.

• 5. In general, passing variables to a function gives up ownership.
• 6. Like in C++, we can pass a variable by reference. We use the ampersand operator (&) for

this. It allows another function to "borrow" ownership, rather than "taking" ownership.
• 7. You can only have a single mutable reference to a variable at a time! Otherwise your code

won't compile! This helps prevent a large category of bugs!
• 8. As a final note, if you want to do a true deep copy of an object, you should use the clone

function.
• 9. Slices give us an immutable, fixed-size reference to a continuous part of an array. Often, we

can use the string literal type str as a slice of an object String.
• 10. Slices are either primitive data, stored on the stack, or they refer to another object. This

means they do not have ownership and thus do not de-allocate memory when they go out of
scope.

1. Rust also has the notion of a "tuple struct". These are like structs except they do not name their
fields.

2. Rust also has the idea of a "unit struct". This is a type that has no data attached to it.
3. But in Rust, an enum is the general term for a type with many constructors, no matter how

much data each has.
4. Instead, Rust uses the match operator to allow us to sort through these. Each match must be

exhaustive, though you can use _ as a wildcard, as in Haskell.
5. As in Python, any "instance" method has a parameter self. In Rust, this reference can be

mutable or immutable. (In C++ it's called this, but it's an implicit parameter of instance
methods). We call these methods using the same syntax as C++, with the . Operator.

6. As in Haskell, we can also use generic parameters for our types. Let's compare the Haskell
definition of Maybe with the Rust type Option, which does the same thing.

7. For the final topic of this article, we'll discuss traits. These are like typeclasses in Haskell, or
interfaces in other languages. They allow us to define a set of functions. Types can provide an
implementation for those functions. Then we can use those types anywhere we need a generic
type with that trait.

8. Also as in Haskell, we can derive certain traits with one line! The Debug trait works like
Show:

9. Haskell has one primary way to declare a new data type: the data keyword. We can also
rename types in certain ways with type and newtype, but data is the core of it all

10. Rust is a little different in that it uses a few different terms to refer to new data types. These all
correspond to particular Haskell structures. The first of these terms is struct.

As a graduating senior who is looking for entry level software developer positions, this paper was very
insightful. The rise of both Rust and Go will pave way for an interesting path for new graduates who
will be able to start fresh in these “new” languages.

 The concepts that Rust brings to the table including ownership, lifetimes, and more, will allow
programmers to write code that is much more safe and with fewer bugs.

