
3.1	 Second	Problem	Set:	Memory	Management	/	Perspectives	on	Rust	

*	

Second	Problem	Set:	Memory	Management	/	Perspectives	on	Rust	
	

3.2...	 Task	1	-	The	runtime	stack	and	the	heap	
	

Task	1	-	The	runtime	stack	and	the	heap	
	

When	a	rust	program,	like	many	other	programs,		runs	it	creates	what	is	called	a	“runtime	stack.”		

The	stack	is	keeps	track	of	everything	that	happens	within	the	program,	it	deals	with	instructions,	jump	points,	data	
and	addresses.	The	variables	on	the	stack	have	different	scopes	meaning	that	they	are	only	accessible	by	certain	parts	
of	the	code	because	the	in	order	to	access	the	addresses	to	those	variables	the	stack	has	to	be	pointing	to	a	block	of	
code	that	contains	them.		

The	stack	can	only	hold	data	that	is	so	large,	so	when	it	needs	to	reference	a	large	part	of	memory	it	does	so	by	storing	
the	address	of	the	data	located	on	the	heap.	The	heap	is	for	large	data	to	be	stored	and	accessed	by	the	stack.		

	
Task	2	-	Explicit	memory	allocation/deallocation	vs	Garbage	Collection	

*	

Rust	is	a	very	important	language	because	it	keeps	safety	of	memory	as	a	big	priority.	The	creators	of	rust	wanted	it	to	
be	low	level,	memory	efficient,	fast,	and	most	importantly	safe.	Having	to	allocate	and	deallocate	memory	is	part	of	
what	makes	programming	in	C	or	C++	difficult.	In	Rust	the	garbage	collection	does	this	for	you.	Garbage	collection	gets	
rid	of	problems	like	memory	leaks,	double	free,	and	hanging	pointers.		

	
Task	3	-	Rust:	Basic	Syntax	

*	

 
Haskell is a garbage collected language. The programmer does not control when items get allocated or deallocated. Every 
so often, your Haskell program will stop completely. It will go through all the allocated objects, and deallocate ones which 
are no longer needed. 
 
With more control over memory, a programmer can make more assertions over performance. 
 
The main distinction between primitives and other types is that primitives have a fixed size. This means they are always 
stored on the stack. Other types with variable size must go into heap memory. 
 
variables are immutable by default. 
 
Once the x value gets assigned its value, we can't assign another! We can change this behavior though by specifying the mut 
(mutable) keyword. 
 
Specifying the types on your signatures is required. 



In Haskell most of our code is expressions. They inform our program what a function "is", rather than giving a set of steps to 
follow. But when we use monads, we often use something like statements in do syntax. 
 
Unlike Haskell, it is possible to have an if expression without an else branch. 
 
Rust has simple compound types like tuples and arrays (vs. lists for Haskell). These arrays are more like static arrays in C++ 
though. This means they have a fixed size. One interesting effect of this is that arrays include their size in their type. Tuples 
meanwhile have similar type signatures to Haskell 
 
Various sizes of integers, signed and unsigned (i32, u8, etc.) 
 
 

*	
Task	4	-	Rust:	Memory	Management	

	

 
In C++, we explicitly allocate memory on the heap with new and de-allocate it with delete. In Rust, we do allocate memory 
and de-allocate memory at specific points in our program. 
 
When we declare a variable within a block, we cannot access it after the block ends. (In a language like Python, this is 
actually not the case!) 
 
Another important thing to understand about primitive types is that we can copy them. Since they have a fixed size, and live 
on the stack, copying should be inexpensive. 
 
String literals don't give us a complete string type. They have a fixed size. So even if we declare them as mutable, we can't 
do certain operations like append another string. This would change how much memory they use! 
 
If we declare a string within a block, we cannot access it after that block ends. 
 
Deep copies are often much more expensive than the programmer intends. So a performance-oriented language like Rust 
avoids using deep copying by default. 
 
In Rust, here's what would happen with the above code. Using let s2 = s1 will do a shallow copy. So s2 will point to the same 
heap memory. But at the same time, it will invalidate the s1 variable. Thus when we try to push values to s1, we'll be using 
an invalid reference. This causes the compiler error. 
 
In general, passing variables to a function gives up ownership. In this example, after we pass s1 over to add_to_len, we can 
no longer use it. 
 
Like in C++, we can pass a variable by reference. We use the ampersand operator (&) for this. It allows another function to 
"borrow" ownership, rather than "taking" ownership. 
 
If you want a mutable reference, you can do this as well. The original variable must be mutable, and then you specify mut in 
the type signature. 
 
 

*	
Task	5	-	Rust:	Data	Types	

	



Rust is a little different in that it uses a few different terms to refer to new data types. These all correspond to particular 
Haskell structures. 
 
Rust also has the notion of a "tuple struct". These are like structs except they do not name their fields. 
 
We can destructure and pattern match on tuple structs. We can also use numbers as indices with the . operator, in place of 
user field names. 
 
The last main way we can create a data type is with an "enum". In Haskell, we typically use this term to refer to a type that 
has many constructors with no arguments. But in Rust, an enum is the general term for a type with many constructors, no 
matter how much data each has. Thus it captures the full range of what we can do with data in Haskell. 
 
Pattern matching isn't quite as easy as in Haskell. We don't make multiple function definitions with different patterns. 
Instead, Rust uses the match operator to allow us to sort through these. 
 
Each match must be exhaustive, though you can use _ as a wildcard, as in Haskell. Expressions in a match can use braces, or 
not. 
 
We can also create "associated functions" for our structs and enums. These are functions that don't take self as a 
parameter. They are like static functions in C++, or any function we would write for a type in Haskell. 
 
we can also use generic parameters for our types. 
 
As in Python, any "instance" method has a parameter self. In Rust, this reference can be mutable or immutable. (In C++ it's 
called this, but it's an implicit parameter of instance methods). 
 
For the final topic of this article, we'll discuss traits. These are like typeclasses in Haskell, or interfaces in other languages. 
They allow us to define a set of functions. Types can provide an implementation for those functions. Then we can use those 
types anywhere we need a generic type with that trait. 
 
 
PL	Adoption	and	Rust	

*	
Task	6	-	Paper	Review:	Secure	PL	Adoption	and	Rust	

	

Review	of	“Benefits	and	Drawbacks	of	Adopting	a	Secure	Programming	Language:	Rust	as	a	Case	Study”.	
https://obj.umiacs.umd.edu/securitypapers/Rust_as_a_Case_Study.pdf	

Rust	makes	programmer	 lives	easier	by	not	making	 them	worry	about	memory	 leaks	or	double	 free	pointers.	Rust	
handles	ownership	of	memory	and	data	very	well	and	its	scoping	is	intuitive.	Rust	is	both	functional	and	object	oriented	
language.	Referencing	in	Rust	is	like	having	a	function	‘borrow’	ownership	of	a	variable	and	then	return	ownership	back	
to	the	parent	block.	This	doesn’t	happen	automatically	and	needs	to	be	explicitly	stated	if	you	want	a	variable	to	be	
passed	 by	 reference	 and	mutable.	 A	 big	 drawback	 to	 rust	 is	 that	 it	 is	 hard	 to	 learn.	 It	 is	 very	 different	 than	most	
programming	languages	and	people	describe	it	as	having	a	near	vertical	learning	curve.	And	although	rust	is	a	pretty	
safe	language	there	are	still	user	made	mistakes	that	can	lead	to	calling	unsafe	blocks	of	code.			


