1) Let G be an abelian group. Let H be the subset of G consisting of the identity e along with all elements of G of order 2. Show that H is a subgroup of G.

proof:

We want to show $H = \{ h \in G : |<h>| = 2 \text{ or } h = e \}$ is a subgroup of G. We do so by using our subgroup theorem. That is, we show H is closed under the induced operation of G, that H contains the identity e of G, and that $\forall h \in H$, $h^{-1} \in H$.

(closure) Let h, k be elements of H. If $h = e$, then $hk = ek = k$, which is in H. If $k = e$, then $hk = he = h$, which is in H. That is, if either of h or k are the identity, then $hk \in H$. Assume neither h nor k are e. Consider $<hk>$ which contains e and hk. We see:

\[
(hk)^2 = (hk)(hk) \quad \text{definition of exponents}
\]

\[
= h(kh)k \quad \text{by associativity}
\]

\[
= h(hk)k \quad \text{since } G \text{ is abelian, it's operation is commutative}
\]

\[
= (hh)(kk) \quad \text{by associativity}
\]

\[
= ee \quad \text{since each of } h, k \text{ are elements in } H, \text{ and neither of } h \text{ or } k \text{ are the identity,}
\]

\[
|<h>| = 2 \text{ and } |<k>| = 2, \text{ which implies } h^2 = 2 = k^2
\]

That is, $(hk)^2 = e$. Thus $<hk> = \{ e, hk \}$ which implies $|<hk>| = 2$. That is, the order of hk is 2. Thus $hk \in H$. We have shown $\forall h, k \in H$ that $hk \in H$. Therefore H is closed under the induced operation from G.

(identity) The identity e of G is defined to be in H by the definition of H.

(inverses) Let h be an element in H. Since $h \in H$, then either $h = e$, or $|<h>| = 2$. If $h = e$ then h is its own inverse as $ee = e$. Further if $h \neq e$ then $|<h>| = 2$, which implies $hh = e$. That is, the order or the cyclic subgroup generated by h equals 2 implies $hh = e$. Thus $h = h^{-1}$ so $h^{-1} \in H$.

We have shown H is closed under the induced operation of G, that H contains the identity e of G, and that $\forall h \in H$, $h^{-1} \in H$. Therefore, by our subgroup theorem, H is a subgroup of G.
2) Prove it is not the case that for all groups G the subset H of G consisting of the identity e along with all elements of G of order 2 is a subgroup of G. (Be complete).

\textbf{proof:}

We show it is not the case that for all groups G the subset H of G consisting of the identity e along with all elements of G of order 2 is a subgroup of G. We do so by counterexample. That is, we give an example of a group G such that $H = \{ h \in G : \langle h \rangle = 2 \text{ or } h = e \}$ is not a subgroup of G.

Consider $S_3 = \{ (1), (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2) \}$, the symmetric group on three letters. Since each transposition has order 2, and each three-cycle has order 3, the set $H = \{ (1), (1\ 2), (1\ 3), (2\ 3) \}$. But $(1\ 2)(2\ 3) = (1\ 2\ 3)$ is not in H. Thus H is not closed under the induced operation of permutation multiplication. Thus H is not a subgroup of S_3.

We have shown it is not the case that for all groups G the subset H of G consisting of the identity e along with all elements of G of order 2 is a subgroup of G by use of a counterexample.
3) Let H and K be groups and let $G = H \times K$. Both H and K appear as subgroups of G in a natural way.

a) What is meant by both H and K appear as subgroups of G in a natural way?

b) Show every element of G is of the form hk for some $h \in H$ and $k \in K$.

c) Show $hk = kh \ \forall \ h \in H$ and $k \in K$.

d) Show $H \cap K = e$.

solution:

a) We want to show both H and K appear as subgroups of G in a natural way. We know $H \times K = \{(h, k) \mid h \in H \text{ and } k \in K\}$. Let e_H and e_K be the identities for H and K, respectively. Now consider $H \times \{e_K\} = \{(h, e_K) \mid h \in H\}$, which is a subgroup of G. We see $H \times \{e_K\} \subseteq H \times K$. Moreover, $H \times \{e_K\}$ can be thought of as a copy of H by identifying each element $h \in H$ with the corresponding element (h, e_K) in $H \times \{e_K\}$. This makes H appear in G in a natural way. Similarly, we consider the subgroup $\{e_H\} \times K = \{(e_H, k) \mid k \in K\}$ of G. Identify each $k \in K$ with the corresponding element (e_H, k) in $H \times K$. Then K appears as a subgroup of G in a natural way.

b) We want to show every element of G is of the form hk for some $h \in H$ and $k \in K$. Let (h, k) be an element of G, for some $h \in H$ and $k \in K$. Then $(h, k) = (h, e_K)(e_H, k)$, by the definition of the operation in $H \times K$ and since $h e_H = h$, and $e_K k = k$, by definition of the identity of a group. Identifying h with (h, e_K) and identifying k with (e_K, k), as described in a), we see that $(h, k) = (h, e_K)(e_H, k)$ is identified with hk. This shows that every element of G is of the form hk for some $h \in H$ and $k \in K$.

c) Let $h \in H$ and $k \in K$. Consider (h, k) in $H \times K$. We see $(h, k) = (e_H, k)(h, e_K)$, by the definition of the operation in $H \times K$. Using the identification we have described, (h, k) corresponds to kh. But in b) we showed (h, k) corresponded to hk. Thus $kh = hk$ under this identification.

d) H appears in G as $H \times \{e_K\} = \{(h, e_K) \mid h \in H\}$ and K appears in G as $\{e_H\} \times K = \{(e_H, k) \mid k \in K\}$. We see $H \times \{e_K\} \cap \{e_H\} \times K = (e_H, e_K)$ which is identified with (e_H, e_K), the identity in $H \times K$. This shows $H \cap K = e$ where e is the identity of G under the identification.