1. Determine whether \(f : \mathbb{R} \rightarrow \mathbb{R} \) defined by \(f(x) = -x^3 \) is a permutation of \(\mathbb{R} \). Give a detailed proof of your answer.

We claim \(f \) is a permutation of \(\mathbb{R} \).

proof of claim:

To show \(f : \mathbb{R} \rightarrow \mathbb{R} \) defined by \(f(x) = -x^3 \) is a permutation of \(\mathbb{R} \) we show \(f \) is one-to-one and \(f \) maps onto \(\mathbb{R} \).

(one-to-one) Let \(x_1, x_2 \in \mathbb{R} \) such that \(f(x_1) = f(x_2) \). Then,

\[
\begin{align*}
f(x_1) &= f(x_2) \\
-(x_1)^3 &= -(x_2)^3 & \text{defn. of } f \\
(x_1)^3 &= (x_2)^3 & \text{mul. by -1} \\
x_1 &= x_2 & \text{take cube root of each side*} \\
\end{align*}
\]

That is, \(f(x_1) = f(x_2) \) implies \(x_1 = x_2 \). We have shown \(\forall x_1, x_2 \in \mathbb{R} \) that \(f(x_1) = f(x_2) \) implies \(x_1 = x_2 \). Thus \(f \) is a one-to-one, by definition of one-to-one.

(onto \(\mathbb{R} \)) Let \(y \in \mathbb{R} \). Consider, \(x = -\sqrt[3]{y} \in \mathbb{R} \), which exists by the definition of the cube root function. We see:

\[
\begin{align*}
f(x) &= f(-\sqrt[3]{y}) & \text{by substitution} \\
&= -(\sqrt[3]{y})^3 & \text{by defn. of } f \\
&= -y & \text{since the cube root function and the cube function are inverses of one another**} \\
&= y \\
\end{align*}
\]

That is, \(f(x) = y \). We have shown \(\forall y \in \mathbb{R} \) that \(\exists x \in \mathbb{R} \), namely \(x = -\sqrt[3]{y} \) such that \(f(x) = y \). Thus \(f \) maps onto \(\mathbb{R} \), by definition of onto \(\mathbb{R} \).

We have shown \(f \) is one-to-one and \(f \) maps onto \(\mathbb{R} \). Therefore \(f \) is a permutation of \(\mathbb{R} \).

* Here we are using the cube root function is one-to-one

** Here we are using the cube root function and the cube function are inverses

Remark. Recognizing * and ** leaves “begging the question”, how can we show * and **? Think outside the course.
2. Let A be a set. Let B be a subset of A and let b be one particular element of B. Determine whether

$$J = \{ \sigma \in S_A \mid \sigma(b) = b \}$$

is sure to be a subgroup of S_A under the induced operation. Give a detailed proof of your answer.

We claim J will always be a subgroup of S_A.

proof of claim:

We prove our claim by using our subgroup theorem. That is, we show that J is closed under permutation multiplication, the induced operation from S_A, the identity e of S_A is in J, and for all $\sigma \in J$, $\sigma^{-1} \in J$.

(closure) Let $\alpha, \beta \in J$. Since $\alpha \in J$, $\alpha(b) = b$. Similarly since $\beta \in J$, $\beta(b) = b$, where b is the one particular element of B. Consider $\alpha \beta$.

$$(\alpha \beta)(b) = \alpha(\beta(b)) \quad \text{by definition of permutation multiplication}$$

$$= \alpha(b) \quad \text{since } \alpha \in J$$

$$= b \quad \text{since } \beta \in J$$

That is, $(\alpha \beta)(b)$, which implies $\alpha \beta \in J$, by definition of J. We have shown $\forall \alpha, \beta \in J$ that $\alpha \beta = J$. Thus J is closed under permutation multiplication.

(identity) Let e be the identity of S_A. So, $e(a) = a \forall a \in A$, by definition of the identity of S_A. In particular $e(b) = b$ the one particular element of B. Thus, $e \in J$, by definition of J.

(inverses) Let $\sigma \in J$. σ is in S_A so σ^{-1} exists in S_A. Moreover, $\sigma \in J$ implies $\sigma(b) = b$. This implies

$$\sigma^{-1}(\sigma(b)) = \sigma^{-1}(b), \quad \text{applying } \sigma^{-1} \text{ to each side.}$$

implies $$(\sigma^{-1} \sigma)(b) = \sigma^{-1}(b), \quad \text{definition of permutation multiplication}$$

implies $e(b) = \sigma^{-1}(b)$ since σ^{-1} is the inverse of σ

implies $b = \sigma^{-1}(b)$ definition of e

That is: $\sigma^{-1}(b) = b$. So $\sigma^{-1} \in J$. We have shown $\forall \sigma \in J$, $\sigma^{-1} \in J$ so J contains the inverse of each of its elements.

Therefore, by our subgroup theorem, J is a subgroup of S_A.

3. Consider the following problem and then answer the questions that are asked. (Note: You are not being asked to give a proof.)

Let G a group. Prove that the permutations $\sigma_a : G \to G$ where $\sigma_a(x) = xa$ for $a \in G$ and $x \in G$ do form a group isomorphic to G.

a) What conditions must σ_a satisfy in order to be a permutation.

$\sigma_a : G \to G$ must be a one-to-one function mapping onto G.

b) Write set builder notation for the set of permutations the problem is asking you to prove is isomorphic to G. Give the set the name J.

We see that $\sigma_a : G \to G$ is an element of S_G.

Here: $J = \{ \alpha \in S_G \mid \exists a \in G \text{ with } \alpha = \sigma_a \}$.

$c) What must be done in order to show J is a group?

Since $J \subseteq S_G$ we can use our subgroup theorem. That is, we show J is closed under the induced operation (permutation multiplication), that the identity e of S_G is in J, and for each $\alpha \in J$, $\alpha^{-1} \in J$.

d) Give a map (with an appropriate name) from G to J that will show G and J are isomorphic.

$\phi : G \to J$ defined by $\phi(a) = \sigma_a$ can be shown to be an isomorphism.