1. **State:** The definition of a permutation of a set A. Be complete.

 \[
 \text{Defn: A permutation of a set } A \text{ is a function } \varphi : A \rightarrow A \text{ that is both one-to-one and onto.}
 \]

2. **State:** Cayley's Theorem.

 \[
 \text{Cayley's Theorem: Every group is isomorphic to a group of permutations.}
 \]

3. Consider $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 8 & 1 & 2 & 4 & 10 & 7 & 5 & 9 & 6 \end{pmatrix}$.

 a) Find all the orbits of α. Write your answer in correct notation (there are two correct notations).

 \[
 \begin{align*}
 [1] &= \{1, 3\} & [7] &= \{7\} \\
 [6] &= \{6, 10\}
 \end{align*}
 \]

 (Remark: Alternate notation "over bar" instead of $[]$.

 e.g. $T = \{1, 3\}$ etc.)

 b) Express α as a product of disjoint cycles.

 \[
 \alpha = (1 \ 3)(2 \ 8 \ 5 \ 4)(6 \ 10)
 \]

4. Compute this product of cycles that are in S_{10}.

 \[
 (2 \ 6 \ 4 \ 9)(3 \ 9 \ 7 \ 10 \ 5)(6 \ 9) = (2 \ 6 \ 7 \ 10 \ 5 \ 3)(4 \ 9)
 \]
5. Let \(A \) be a set. Let \(B \) be a subset of \(A \) and let \(b \) be one particular element of \(B \). Determine whether the given subset \(J \) is sure to be a subgroup of \(S_A \) under the induced operation.

a) Give a detailed proof of your answer. Start by clearly stating whether you are proving \(J \) is or is not a subgroup. \(J = \{ \sigma \in S_A \mid \sigma[B] = [B] \} \)

We claim \(J \) is a subgroup of \(S_A \).

Proof of claim:

We use our subgroup theorem to show \(J \subseteq S_A \).

(closed under perm. mult). Let \(\alpha, \beta \in J \). Consider \(\alpha \beta \).

We show \(\alpha \beta \in J \). Let \(x \in B \). Then \((\alpha \beta)(x) = \alpha(\beta(x)) \), defn. perm. mult., \(= \alpha(y) \), (where \(y \in B \) since \(\beta \in J \)), \(= z \), where \(z \in B \) since \(\alpha \in J \). That is, \((\alpha \beta)(x) \in B \) \(\forall x \in B \). Thus \((\alpha \beta)[B] \subseteq B \).

Let \(z \in B \). Since \(\alpha \in J \), \(\alpha[B] = B \), so \(y \in B \) \(\exists \) \(y \in B \) such that \(\beta(x) = y \). Then \((\alpha \beta)(x) = \alpha(\beta(x)) = \alpha(y) = z \). This shows \(B \subseteq (\alpha \beta)[B] \). \(\alpha \beta \in J \).

(identity is in \(J \)). Let \(e \) be the identity of \(S_A \).

Let \(x \in B \), then \(e(x) \in B \). Thus \(\forall x \in B \), \(e(x) \in B \) so \(e[B] = B \).

Moreover \(\forall x \in B \), \(e(x) = x \), so \(B \subseteq e[B] \).

Thus \(e[B] = B \) and \(e \in J \).

(inverses are in \(J \)) Let \(\alpha \in J \). Consider \(\alpha^{-1} \).

Since \(\alpha \in J \), \(\alpha[B] = B \).

Thus \(\alpha^{-1}(y) = \alpha^{-1}(\alpha(x)) = x \).

Further ...

(b) Determine whether \(J = \{ \sigma \in S_A \mid \sigma(b) \in B \} \) is sure to be a subgroup of \(S_A \) under the induced operation. Briefly explain your answer using completer well written sentences.

We claim \(J \) is not necessarily a subgroup of \(S_A \).

Proof of claim:

Consider the counter example: \(A = \{1, 2, 3\} \), \(B = \{1, 2, 3\} \) and \(b = 1 \). We see \(\alpha = (1 \ 2 \ 3) \in J \).

Also \(\beta = (1 \ 2 \ 3) \in J \) but \(\alpha \beta = (1 \ 2 \ 3)(1 \ 2 \ 3) = (1 \ 2 \ 3) \neq J \) since \((\alpha \beta)(1) = 3 \notin B \).