1. Show that for every subgroup H of S_n for $n \geq 2$, either all the permutations in H are even or exactly half of them are even.

2. Consider S_n for a fixed $n \geq 2$ and let σ be a fixed odd permutation. Show that every odd permutation in S_n is a product of σ and some permutation in A_n.

3. Let G be a group and let a be a fixed element of G. The map $\lambda_a : G \rightarrow G$, given by $\lambda_a(g) = ag$ for $g \in G$, is a permutation of the set G. Show that $H = \{\lambda_a | a \in G\}$ is a subgroup of S_G, the group of all permutations of G.