DAY 38: Exam II Friday on sections 8, 9, 10, 11, 13

Defs and Theorems: permutation, Cayley's Theorem, Alternating group of degree n, even/odd perm., Lagrange's Theorem, isomorphism, homomorphism, $\text{Ker} (\Psi)$ where Ψ is a homomorphism.

Ideas about $\text{Ker} (\Psi): \quad \Psi: G \rightarrow G'$

If Ψ is a homomorphism then $\Psi(e) = e'$ where e is the identity of G and e' is the identity of G'.

$\text{Ker} (\Psi) = \{ x \in G \mid \Psi(x) = e' \}$ defn.

We know from the four part theorem on properties of homomorphisms ($e \mapsto e'$, $\Psi(a^{-1}) = (\Psi(a))^{-1}$, $\Psi[H] \subseteq G'$ and $\Psi^{-1}[H'] \subseteq G$) that $\Psi^{-1}[H']$ is a subgroup of G (G not G') (the inverse image of H'

That is, $\Psi^{-1}[H'] = \{ x \in G \mid \Psi(x) \in H' \}$ is a subgroup of G (G not G')

Since $\{e'\}$ is a subgroup of G' it follows directly from the theorem that $\Psi^{-1}[\{e'\}] = \text{Ker} (\Psi)$ is a subgroup of G.
ex: Let \(\psi \) be a homomorphism of a group \(G \) into a group \(G' \). Prove \(\ker(\psi) \) is a subgroup of \(G \).

proof:

We will show \(\ker(\psi) = \{ x \in G \mid \psi(x) = e' \} \)

where \(e' \) is the identity in \(G' \) is a subgroup of \(G \) by using our subgroup theorem.

1. **Closure.** Let \(x, y \in \ker(\psi) \). Consider \(xy \).

 We see \(\psi(xy) = \psi(x)\psi(y) \) since \(\psi \) is a homomorphism.

 That is, \(\psi(xy) = e' \) which implies \(xy \in \ker(\psi) \),

 by defn. of \(\ker(\psi) \).

2. **Identity.** Let \(e \) be the identity in \(G \). Let \(a \in G \). Then, \(\psi(a) = \psi(ae) \) defn identity

 That is: \(\psi(a) = \psi(a)\psi(e) \), which implies

 (multiply both sides by \(\psi(a)^{-1} \)) \(e' = \psi(e) \).

 So \(e \in \ker(\psi) \), as desired.

3. **Inverse.** Let \(x \in \ker(\psi) \). Then \(\psi(x) = e' \).

 Further \(xx^{-1} = e \) implies \(\psi(xx^{-1}) = \psi(e) = e' \)

 (from above). But \(\psi(xx^{-1}) = \psi(x)\psi(x^{-1}) \),

 by the homomorphism property. Thus

 \(\psi(x)\psi(x^{-1}) = e' \), which implies

 (multiply each side on the left by \(\psi(x)^{-1} \)) \(\psi(x^{-1}) = (\psi(x))^{-1} \).

 That is, \(\psi(x^{-1}) = (e')^{-1} \) so \(\psi(x^{-1}) = e' \).

 Thus \(x^{-1} \in \ker(\psi) \). We have shown \(\forall x \in \ker(\psi), \ x^{-1} \in \ker(\psi) \).

 By our subgroup theorem, \(\ker(\psi) \) is a subgroup of \(G \).
ex:
 a) define A_n
 b) Prove A_n is a subgroup of S_n. (with using defn) (of S.G, or S.G. thm).
 proof:
 Let $\phi : S_n \to \mathbb{Z}_2$ be defined by
 \[
 \phi(\sigma) = \begin{cases}
 0 & \text{if } \sigma \text{ is even} \\
 1 & \text{if } \sigma \text{ is odd}.
 \end{cases}
 \]
 We can show ϕ is a homomorphism. (this entail?)
 Further, $\ker(\phi) = \{ \sigma \in S_n \mid \phi(\sigma) = 0 \} = A_n$.
 The kernel of a homomorphism is a subgroup of its domain. Therefore $A_n \leq S_n$.

ex: Let $\phi : GL(n, \mathbb{R}) \to \langle \mathbb{R}^*, \cdot \rangle$ be defined by $\phi(A) = \det(A)$.

Note: we can "easily" show ϕ is a homomorphism using the matrix algebra property $\det(AB) = \det A \cdot \det B$.

Q: What is $\ker(\phi)$?