DAY 3

THW: pg 8: 14b, 31, 32

(1) You must state the problem
(2) you have to write complete well-written math. sentences - word processed.

ex: see DAY 2

Study section 2 pg 25: 1-13

Defn: A binary operation on a set S is a function mapping $S \times S$ into S.

Notation: For each $(a,b) \in S \times S$ denote $\ast ((a, b)) = a \ast b$.

ex: $+$ on \mathbb{R} is a binary operation

$+$ on \mathbb{Z}

Defns: Let \ast be a binary operation on a set S and let H be a subset of S. The subset H is closed under \ast if for all $a, b \in H$, $a \ast b \in H$.

In this case we say restricting \ast to H gives the induced operation of \ast on H.
ex (see pg 22 & 27)

Let $F = \{ f \mid f: \mathbb{R} \to \mathbb{R} \}$.

Let $f, g \in F$ we define $f + g$

to be $(f + g)(x) = f(x) + g(x)$

function \leftarrow some real number

\uparrow of functions addition

Let $f, g \in F$ we define

$(f \circ g)(x) = f(g(x))$

LHS is defined by RHS

Defs: (1) A binary operation \ast on a set S is commutative if $\forall a, b \in S$,

$a \ast b = b \ast a$.

(2) A binary operation \ast on a set S

is associative if $\forall a, b, c \in S$,

$(a \ast b) \ast c = a \ast (b \ast c)$.

Note: pay particular attention to pg 23

ex 2.13
Remark: binary operations can be given by a table.

Ex: Let $S = \{a, b, c\}$. The following table defines a binary operation on S.

$$
\begin{array}{c|ccc}
& a & b & c \\
\hline
a & a & c & b \\
b & c & b & a \\
c & b & b & c \\
\end{array}
$$

Back to Day 1 we had "motions". The notion of followed by is a binary operation on the set of motions.
Show $|\{a, b\}| = |\{c, d\}|$

where $a, b, c, d \in \mathbb{R}$

Think: what does same card mean?

A function from one to the other that is 1-1 and onto.

A side ex: $\mathbb{Z} = \{\ldots, -2, 0, 2, 4, \ldots \}$

$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots \}$

Here we'd define $f: \mathbb{Z} \to 2\mathbb{Z}$ by $f(n) = 2n$. Now 1-1 onto

Note $2\mathbb{Z} \subseteq \mathbb{Z}$

TH W: P1 say what you want to do

P2 Consider f: here to there defined

P3 Show f is 1-1

P4 Show f is onto

P5 Wrap