A is a nonempty set.

Let S_n be the set of all permutations of the set A.

Special Case: $A = \{1, 2, \ldots, n\}$ we denote S_n by S_n.

Example

$n = 3$

S_3 is the set of 6 $\binom{3}{2} = 6$ permutations of $\{1, 2, 3\}$.

\[
\begin{align*}
(1 \ 2 \ 3) & \quad (1 \ 3 \ 2) & \quad (2 \ 1 \ 3) & \quad (1 \ 2 \ 3) & \quad (1 \ 3 \ 2) & \quad (2 \ 3 \ 1) \\
(1 \ 2 \ 3) & \quad (2 \ 1 \ 3) & \quad (2 \ 3 \ 1) & \quad (1 \ 3 \ 2) & \quad (1 \ 2 \ 3) & \quad (3 \ 2 \ 1) \\
\end{align*}
\]

Second

\[
\begin{array}{ccccccc}
\ell_0 & \ell_1 & \ell_2 & \ell_3 & \ell_4 & \ell_5 & \ell_6 \\
L_0 & L_1 & L_2 & L_3 & L_4 & L_5 & L_6 \\
L_1 & L_0 & L_2 & L_3 & L_4 & L_5 & L_6 \\
L_2 & L_1 & L_0 & L_3 & L_4 & L_5 & L_6 \\
L_3 & L_2 & L_1 & L_0 & L_4 & L_5 & L_6 \\
L_4 & L_3 & L_2 & L_1 & L_0 & L_5 & L_6 \\
L_5 & L_4 & L_3 & L_2 & L_1 & L_0 & L_6 \\
L_6 & L_5 & L_4 & L_3 & L_2 & L_1 & L_0 \\
\end{array}
\]

\[
\begin{align*}
\ell_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} & = \begin{pmatrix} 1 & 3 & 2 \\ 3 & 1 & 2 \end{pmatrix} \\
\ell_1 \ell_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = \ell_0 \\
\ell_1 \ell_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = \ell_0 \\
\ell_2 \ell_1 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \ell_1 \\
\ell_2 \ell_3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \ell_2 \\
\end{align*}
\]
Lemma. Let \(f : A \rightarrow A \) and \(g : A \rightarrow A \) which is both one-to-one and onto \(A \).

Then \(f \circ g : A \rightarrow A \) is one-to-one and onto \(A \).

Proof (one-to-one): Suppose that \(x, y \in A \) and that \((f \circ g)(x) = (f \circ g)(y) \). We must show that \(x = y \).

So \(f(g(x)) = f(g(y)) \).

Since \(f : A \rightarrow A \) is one-to-one, it must be that \(g(x) = g(y) \). Since \(g \) is one-to-one, it must be that \(x = y \).

(onto) Let \(y \in A \) be given to us. We must show that there is an \(x \in A \) such that \((f \circ g)(x) = y \). Since \(f : A \rightarrow A \) is onto \(A \), there is a \(b \in A \) such that \(f(b) = y \). Since \(g : A \rightarrow A \) is onto \(A \), there is a \(x \in A \) such that \(g(x) = b \).

Then \((f \circ g)(x) = f(g(x)) = f(b) = y \), as required.

Corollary. Function composition is a binary operation on \(S_\mathbb{A} \).

We are trying to show that \(S_\mathbb{A} \) is a group under composition.

By the corollary, function composition is a binary operation on \(S_\mathbb{A} \). Composition of functions is always associative.
Let \(1_A : A \to A \) where \(1_A(x) = x \) for every \(x \in A \).

It's clear that for any \(\sigma \in S_A \) that
\[1_A \circ \sigma = \sigma = \sigma \circ 1_A \]

Finally if \(\sigma : A \to A \) is both one-to-one and onto \(A \) then \(\sigma \) has an inverse function \(\sigma^{-1} \) which is both one-to-one and onto.

Corollary: If \(A \) is any nonempty set then \(S_A \) is a group under function composition.

Lemma: Let \(G \) and \(G' \) be groups and let \(\theta : G \to G' \) where \(\theta(xy) = \theta(x) \theta(y) \) for all \(xy \in G \).

Then if \(H \) is a subgroup of \(G \) then \(\theta(H) = \{ \theta(h) \mid h \in H \} \) is a subgroup of \(G' \).

Proof: We must show that \(\theta(H) \) is a subgroup of \(G' \).

Consider \(e_G \) and \(e_G' \) be the identity elements of \(G \) and \(G' \) respectively.

Claim that \(\theta(e_G) = e_G' \). Let \(x \in G \).

Then \(\theta(x e_G) = \theta(x) \theta(e_G) \)

\(\theta(x) \) = \(x \)
So \(\theta(x) = \theta(x) \theta(e_a) \)

\[
[\theta(x)]^{-1} \theta(x) = [\theta(x)] \theta(x) \theta(e_a)
\]

\[
e_{G_1} = \theta(e_a)
\]

\[
e_{G_1} = \theta(e_a)
\]

Since \(H \) is a subgroup of \(G_1, e_{G_1} \in H \)

\[
\Rightarrow \theta(e_{G_1}) \in \theta(H) \Rightarrow e_{G_1} \in \theta(H).
\]

Let \(\theta(h_1) \) and \(\theta(h_2) \) be elements of \(\theta(H) \) where \(h_1, h_2 \in H \), we want to show \(\theta(h_1) \theta(h_2) \in \theta(H) \).

So \(\theta(h_1) \theta(h_2) = \theta(h_1 h_2) \) and \(h_1 h_2 \in H \)

because \(h_1, h_2 \in H \) and \(H \) is a subgroup of \(G_1 \). Let \(\theta(h) \in \theta(H) \) where \(h \in H \).

We must prove that \([\theta(h)]^{-1} \in \theta(H) \), since \(h \in H \) and since \(H \) is a subgroup of \(G_1 \), it's true that \(h^{-1} \in H \). Claim that \([\theta(h)]^{-1} = \theta(h^{-1}) \).

Now \(\theta(h) \theta(h^{-1}) = \theta(h h^{-1}) = \theta(e_{G_1}) = \theta(e_{G_1}) \theta(h) \)

Therefore \([\theta(h)]^{-1} = \theta(h^{-1}) \in \theta(H) \), and we are done.