Test Review

Dfn: Let \(A \) be a nonempty set. A permutation of \(A \) is a function \(\sigma : A \rightarrow A \) that is both one-to-one and onto \(A \).

Examples

\[A = \{1, 2, 3\} \]
\[\sigma : A \rightarrow A \text{ where } \sigma(1) = 2, \sigma(2) = 3 \]
\[\text{and } \sigma(3) = 1. \]

Clearly \(\sigma \) is both one-to-one and onto, so \(\sigma \) is a permutation of \(A \).

Notation

This permutation \(\sigma \) can be written as \(\sigma = (1 \ 2 \ 3) \).

Let \(\beta = (3 \ 2 \ 1) \)

How many permutations of \(A = \{1, 2, 3\} \) are there?

There are \(3 \cdot 2 \cdot 1 = 6 = 3! \) permutations of \(A = \{1, 2, 3\} \).

In general there will be \(n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1 = n! \) permutations of the set \(A = \{1, 2, 3, \ldots, n\} \).

The set of all \(n! \) permutations of \(A = \{1, 2, 3, \ldots, n\} \)
is denoted by \(S_n \).
We will make a group out of S_n, called the symmetric group on n symbols.

We need a binary operation for S_n. If $\sigma: A \rightarrow A$ and $\beta: A \rightarrow A$ then $(\sigma \circ \beta): A \rightarrow A$ whose for all $a \in A$

$(\sigma \circ \beta)(a) = \sigma(\beta(a))$.

- Function composition is always associative so our binary operation \circ is associative.