
...

7 Lesson 7: State Space Problem Solving

*

Lesson 7: State Space Problem Solving

...

*

7.1 What’s It All About?

What’s It All About?

1. Some problems that can readily be solved within the state space framework are presented.

2. The state space problem solving model is introduced.

3. The example problems are represented in terms of the state space paradigm.

4. A Prolog program is written for the “Missionaries and Cannibals” problem.

*

7.2 Example Problems

Example Problems

*

7.3 A Waterjug Problem

A Waterjug Problem

You have a sink with an unlimited supply of water at your disposal. You have two unmarked jugs, an M-gallon jug
and an N-gallon jug. How can you get exactly X gallons into a particular one of the two jugs, with no water left in
the other jug?

An instance of the problem: Given a 3-gallon jug and a 4-gallon jug, how can you get exactly 2 gallons in the 3-gallon
jug.

*

7.4 The Towers of Hanoi

The Towers of Hanoi

A very small version of the “Towers of Hanoi” problem: Three pegs. Three disks – large, medium, small. The disks
are place on the pegs subject to the constraint that a larger disk can never appear on top of a smaller disk. A move
consists of transferring a disk, the top one, from one peg to another, placing it on top of whatever disks may be
present. The task is to transfer all of the pegs from the first peg to the third peg.

*

7.5 The Missionaries and Cannibals Problem

The Missionaries and Cannibals Problem

Three missionaries and three cannibals, along with one boat that fits at most two people (and requires at least one
person for operation), are on the left bank of a river. The most salient thing about missionaries and cannibals in
“cohabitation” is that if ever the cannibals in any one spot (left bank, right bank, on the boat) outnumber the
missionaries, the outnumbered missionaries will be consumed – eaten! The goal of this problem is to get all six
individuals safely across the river from the left bank to the right bank.



*

7.6 The Eight Queens Problem

The Eight Queens Problem

Place 8 queens on a chessboard in such a way that no queen can attack any other queen.

*

7.7 State Space Problem Solving

State Space Problem Solving

State space problem solving is a standard AI methodology that can be used to solve a variety of problems.

The basic idea is to represent a world as a collection of objects which are defined in terms of properties and their
values. For a given world, this can generally be done in a number of ways.

A state of the world consists of the collection of objects together with the values of their properties.

Operators, called “state space operators”, serve to transform one state of the world into another state of the world.

A state space solution consists of a sequence of operators that transforms the world from some initial state
into a goal state.

How do you find a state space solution to a state space problem? You perform state space search.

*

7.8 State Space Problem Description

State Space Problem Description

A state space problem description is a triple consisting of:

• I, a set of possible initial states

• G, a set of goal states

• O, a set of state space operators mapping S to S

where S is a state space which “fits” the problem.

*

7.9 State Space Problem Solution

State Space Problem Solution

A state space problem solution is a triple consisting of:

• i, one of the possible initial states

• g, one of the possible goal states

• x, a finite sequence of operators that transforms the initial state into the goal state

in the context of a given state space.



*

7.10 Example: State Space Problem Description for Towers of Hanoi

Example: State Space Problem Description for Towers of Hanoi

Represent the three disks by symbols L (large) and M (medium) and S (small). Represent the three pegs as lists,
imagining the disks arranged from left to right in increasing order of size.

Then ...

• I = {((S M L) () () )}

• G = {(() () (S M L) )}

• O = {M12, M13, M21, M23, M31, M32}, where

– M12 - move a disk from peg 1 to peg 2

– M13 - move a disk from peg 1 to peg 3

– M21 - move a disk from peg 2 to peg 1

– M23 - move a disk from peg 2 to peg 3

– M31 - move a disk from peg 3 to peg 1

– M32 - move a disk from peg 3 to peg 2

One possible state space solution:

M13 ⇒ M12 ⇒ M32 ⇒ M13 ⇒ M21 ⇒ M23 ⇒ M13

How was this solution obtained? By means of state space search!

*

7.11 A Word on State Space Search

A Word on State Space Search

State space search is a process in which you begin by considering an initial state to be the root of a tree, called the
state space tree. You grow the state space tree (you might prefer to maintain a graph) by making use of applicable
state space operators to determine the children of a node. When, in the process of growing the tree, a goal node
turns up, a solution is at hand. The solution can be observed by considering the sequence of state space operators
that lead from the initial state to the goal state.

There is a great deal to be said about state space search, which is generally discussed in a first AI course. For
example, there are varieties of search, ranging from “blind” searches to “heuristic” searches. The two most basic
blind searches are called breadth first search and depth first search. One of the most used heuristic searches is
called best first search. There are also techniques for pruning the search tree in order to expedite search.



*

7.12 Example: State Space Problem Description for Missionaries and Cannibals

Example: State Space Problem Description for Missionaries and Cannibals

Represent a state by a list of five elements, such that:

• The first element represents the number of missionaries on the left bank

• The second element represents the number of canibals on the left bank

• The third element, l or r, represents bank on which the missionaries and cannibals happen to be

• The fourth element represents the number of missionaries on the right bank

• The fifth element represents the number of cannibals on the right bank

Then ...

• I = {(3,3,l,0,0)}

• G = {(0,0,r,3,3)}

• O = {mlr, mmlr, mclr, cclr, clr, mrl, mmrl, mcrl, ccrl, crl}, where

– mlr - transfer one missionary from the left bank to the right bank

– mmlr - transfer two missionaries from the left bank to the right bank

– mclr - transfer one missionary and one cannibal from the left bank to the right bank

– cclr - transfer two cannibals from the left bank to the right bank

– clr - transfer one cannibal from the left bank to the right bank

– mrl - transfer one missionary from the left bank to the right bank

– mmrl - transfer two missionaries from the left bank to the right bank

– mcrl - transfer one missionary and one cannibal from the left bank to the right bank

– ccrl - transfer two cannibals from the left bank to the right bank

– crl - transfer one cannibal from the left bank to the right bank

*

7.13 State Space Program for Missionaries and Cannibals

State Space Program for Missionaries and Cannibals

*

7.14 The Move Making Predicate

The Move Making Predicate

% -----------------------------------------------------------------------
% --- make_move(S,T,SSO) :: Make a move from state S to state T by SSO

make_move([MLB,CLB,l,MRB,CRB],[MLA,CLA,r,MRA,CRA],mlr) :-
mlr([MLB,CLB,l,MRB,CRB],[MLA,CLA,r,MRA,CRA]).

make_move([MLB,CLB,l,MRB,CRB],[MLA,CLA,r,MRA,CRA],mmlr) :-
mmlr([MLB,CLB,l,MRB,CRB],[MLA,CLA,r,MRA,CRA]).



make_move([MLB,CLB,l,MRB,CRB],[MLA,CLA,r,MRA,CRA],mclr) :-
mclr([MLB,CLB,l,MRB,CRB],[MLA,CLA,r,MRA,CRA]).

make_move([MLB,CLB,l,MRB,CRB],[MLA,CLA,r,MRA,CRA],cclr) :-
cclr([MLB,CLB,l,MRB,CRB],[MLA,CLA,r,MRA,CRA]).

make_move([MLB,CLB,l,MRB,CRB],[MLA,CLA,r,MRA,CRA],clr) :-
clr([MLB,CLB,l,MRB,CRB],[MLA,CLA,r,MRA,CRA]).

make_move([MLB,CLB,r,MRB,CRB],[MLA,CLA,l,MRA,CRA],mrl) :-
mrl([MLB,CLB,r,MRB,CRB],[MLA,CLA,l,MRA,CRA]).

make_move([MLB,CLB,r,MRB,CRB],[MLA,CLA,l,MRA,CRA],mmrl) :-
mmrl([MLB,CLB,r,MRB,CRB],[MLA,CLA,l,MRA,CRA]).

make_move([MLB,CLB,r,MRB,CRB],[MLA,CLA,l,MRA,CRA],mcrl) :-
mcrl([MLB,CLB,r,MRB,CRB],[MLA,CLA,l,MRA,CRA]).

make_move([MLB,CLB,r,MRB,CRB],[MLA,CLA,l,MRA,CRA],ccrl) :-
ccrl([MLB,CLB,r,MRB,CRB],[MLA,CLA,l,MRA,CRA]).

make_move([MLB,CLB,r,MRB,CRB],[MLA,CLA,l,MRA,CRA],crl) :-
crl([MLB,CLB,r,MRB,CRB],[MLA,CLA,l,MRA,CRA]).

mlr([MLB,CLB,l,MRB,CRB],[MLA,CLA,r,MRA,CRA]) :-
MLB > 0,
MLA is MLB - 1,
CLA = CLB,
MRA is MRB + 1,
CRA = CRB.

mmlr([MLB,CLB,l,MRB,CRB],[MLA,CLA,r,MRA,CRA]) :-
MLB > 1,
MLA is MLB - 2,
CLA = CLB,
MRA is MRB + 2,
CRA = CRB.

mclr([MLB,CLB,l,MRB,CRB],[MLA,CLA,r,MRA,CRA]) :-
MLB > 0, CLB > 0,
MLA is MLB - 1,
CLA is CLB - 1,
MRA is MRB + 1,
CRA is CRB + 1.

cclr([MLB,CLB,l,MRB,CRB],[MLA,CLA,r,MRA,CRA]) :-
CLB > 1,
MLA = MLB,
CLA is CLB - 2,
MRA = MRB,
CRA is CRB + 2.

clr([MLB,CLB,l,MRB,CRB],[MLA,CLA,r,MRA,CRA]) :-
CLB > 0,
MLA = MLB,
CLA is CLB - 1,
MRA = MRB,
CRA is CRB + 1.

mrl([MLB,CLB,r,MRB,CRB],[MLA,CLA,l,MRA,CRA]) :-
MRB > 0,



MLA is MLB + 1,
CLA = CLB,
MRA is MRB - 1,
CRA = CRB.

mmrl([MLB,CLB,r,MRB,CRB],[MLA,CLA,l,MRA,CRA]) :-
MRB > 1,
MLA is MLB + 2,
CLA = CLB,
MRA is MRB - 2,
CRA = CRB.

mcrl([MLB,CLB,r,MRB,CRB],[MLA,CLA,l,MRA,CRA]) :-
MRB > 0, CRB > 0,
MLA is MLB + 1,
CLA is CLB + 1,
MRA is MRB - 1,
CRA is CRB - 1.

ccrl([MLB,CLB,r,MRB,CRB],[MLA,CLA,l,MRA,CRA]) :-
CRB > 1,
MLA = MLB,
CLA is CLB + 2,
MRA = MRB,
CRA is CRB - 2.

crl([MLB,CLB,r,MRB,CRB],[MLA,CLA,l,MRA,CRA]) :-
CRB > 0,
MLA = MLB,
CLA is CLB + 1,
MRA = MRB,
CRA is CRB - 1.

*

7.15 The Feast State Predicate

The Feast State Predicate

% -----------------------------------------------------------------------
% --- feast_state(S) :: S is a state where a missionary is in peril

feast_state([MLB,CLB,_,_,_]) :-
CLB > MLB, MLB > 0.

feast_state([_,_,_,MRB,CRB]) :-
CRB > MRB, MRB > 0.



*

7.16 The Solver

The Solver

% -----------------------------------------------------------------------
% --- solve(Start,Solution) :: succeeds if a Solution represents a path
% --- from the Start=start to finish.

solve :-
extend_path([[3,3,l,0,0]],[],Solution),
write_solution(Solution).

extend_path(PathSoFar,SolutionSoFar,Solution) :-
PathSoFar = [[0,0,r,3,3]|_],
Solution = SolutionSoFar.

extend_path(PathSoFar,SolutionSoFar,Solution) :-
PathSoFar = [CurrentState|_],
make_move(CurrentState,NextState,Move),
not(member(NextState,PathSoFar)),
not(feast_state(NextState)),
Path = [NextState|PathSoFar],
Soln = [Move|SolutionSoFar],
extend_path(Path,Soln,Solution).

*

7.17 The Solver - long form

The Solver - long form

% -----------------------------------------------------------------------
% --- solve(Start,Solution) :: succeeds if a Solution represents a path
% --- from the Start=start to finish.

solve :-
extend_path([[3,3,l,0,0]],[],Solution),
write_solution(Solution).

extend_path(PathSoFar,SolutionSoFar,Solution) :-
PathSoFar = [[0,0,r,3,3]|_],
show(’PathSoFar’,PathSoFar),
show(’SolutionSoFar’,SolutionSoFar),
Solution = SolutionSoFar.

extend_path(PathSoFar,SolutionSoFar,Solution) :-
show(’PathSoFar’,PathSoFar),
show(’SoluSoFar’,SolutionSoFar),
PathSoFar = [CurrentState|_],
show(’CurrState’,CurrentState),
make_move(CurrentState,NextState,Move),
show(’NextState’,NextState),
not(member(NextState,PathSoFar)),
not(feast_state(NextState)),
Path = [NextState|PathSoFar],



Soln = [Move|SolutionSoFar],
extend_path(Path,Soln,Solution).

*

7.18 Predicate to write the solution

Predicate to write the solution

write_solution(S) :-
nl, write(’Solution ...’), nl, nl,
write_the_solution(S),nl.

write_the_solution([]).
write_the_solution([H|T]) :-
write_the_solution(T),
elaborate(H,E),
write(E),nl.

elaborate(mlr,Elaboration) :-
Elaboration = ’Transfer a missionary \n from the left bank to the right bank.’.

elaborate(mmlr,Elaboration) :-
Elaboration = ’Transfer two missionaries \n from the left bank to the right bank.’.

elaborate(mclr,Elaboration) :-
Elaboration = ’Transfer a missionary and a cannibal \n from the left bank to the right bank.’.

elaborate(cclr,Elaboration) :-
Elaboration = ’Transfer two cannibals \n from the left bank to the right bank.’.

elaborate(clr,Elaboration) :-
Elaboration = ’Transfer a cannibal \n from the left bank to the right bank.’.

elaborate(mrl,Elaboration) :-
Elaboration = ’Transfer a missionary \n from the right bank to the left bank.’.

elaborate(mmrl,Elaboration) :-
Elaboration = ’Transfer two missionaries \n from the right bank to the left bank.’.

elaborate(mcrl,Elaboration) :-
Elaboration = ’Transfer a missionary and a cannibal \n from the right bank to the left bank.’.

elaborate(ccrl,Elaboration) :-
Elaboration = ’Transfer two cannibals \n from the right bank to the left bank.’.

elaborate(crl,Elaboration) :-
Elaboration = ’Transfer a cannibal \n from the right bank to the left bank.’.

*

7.19 Demo - Short Form

Demo - Short Form

bash-3.2$ swipl
<<redacted>>

?- consult(’mc.pro’).
% inspector.pro compiled 0.00 sec, 5 clauses
% mc.pro compiled 0.00 sec, 63 clauses
true.



?- solve.

Solution ...

Transfer a missionary and a cannibal
from the left bank to the right bank.

Transfer a missionary
from the right bank to the left bank.

Transfer two cannibals
from the left bank to the right bank.

Transfer a cannibal
from the right bank to the left bank.

Transfer two missionaries
from the left bank to the right bank.

Transfer a missionary and a cannibal
from the right bank to the left bank.

Transfer two missionaries
from the left bank to the right bank.

Transfer a cannibal
from the right bank to the left bank.

Transfer two cannibals
from the left bank to the right bank.

Transfer a missionary
from the right bank to the left bank.

Transfer a missionary and a cannibal
from the left bank to the right bank.

true

?-

*

7.20 Demo - Color Coded Long Form

Demo - Color Coded Long Form

bash-3.2$ swipl
<<redacted>>

?- consult(’mc.pro’).
% inspector.pro compiled 0.00 sec, 5 clauses
% mc.pro compiled 0.00 sec, 63 clauses
true.

?- solve.

PathSoFar = [[3,3,l,0,0]]
SolnSoFar = []
CurrState = [3,3,l,0,0]
NextState = [2,3,r,1,0]
NextState = [1,3,r,2,0]
NextState = [2,2,r,1,1]
PathSoFar = [[2,2,r,1,1],[3,3,l,0,0]]



SolnSoFar = [mclr]
CurrState = [2,2,r,1,1]
NextState = [3,2,l,0,1]
PathSoFar = [[3,2,l,0,1],[2,2,r,1,1],[3,3,l,0,0]]
SolnSoFar = [mrl,mclr]
CurrState = [3,2,l,0,1]
NextState = [2,2,r,1,1]
NextState = [1,2,r,2,1]
NextState = [2,1,r,1,2]
NextState = [3,0,r,0,3]
PathSoFar = [[3,0,r,0,3],[3,2,l,0,1],[2,2,r,1,1],[3,3,l,0,0]]
SolnSoFar = [cclr,mrl,mclr]
CurrState = [3,0,r,0,3]
NextState = [3,2,l,0,1]
NextState = [3,1,l,0,2]
PathSoFar = [[3,1,l,0,2],[3,0,r,0,3],[3,2,l,0,1],[2,2,r,1,1],
[3,3,l,0,0]]
SolnSoFar = [crl,cclr,mrl,mclr]
CurrState = [3,1,l,0,2]
NextState = [2,1,r,1,2]
NextState = [1,1,r,2,2]
PathSoFar = [[1,1,r,2,2],[3,1,l,0,2],[3,0,r,0,3],[3,2,l,0,1],
[2,2,r,1,1],[3,3,l,0,0]]
SolnSoFar = [mmlr,crl,cclr,mrl,mclr]
CurrState = [1,1,r,2,2]
NextState = [2,1,l,1,2]
NextState = [3,1,l,0,2]
NextState = [2,2,l,1,1]
PathSoFar = [[2,2,l,1,1],[1,1,r,2,2],[3,1,l,0,2],[3,0,r,0,3],
[3,2,l,0,1],[2,2,r,1,1],[3,3,l,0,0]]
SolnSoFar = [mcrl,mmlr,crl,cclr,mrl,mclr]
CurrState = [2,2,l,1,1]
NextState = [1,2,r,2,1]
NextState = [0,2,r,3,1]
PathSoFar = [[0,2,r,3,1],[2,2,l,1,1],[1,1,r,2,2],[3,1,l,0,2],
[3,0,r,0,3],[3,2,l,0,1],[2,2,r,1,1],[3,3,l,0,0]]
SolnSoFar = [mmlr,mcrl,mmlr,crl,cclr,mrl,mclr]
CurrState = [0,2,r,3,1]
NextState = [1,2,l,2,1]
NextState = [2,2,l,1,1]
NextState = [1,3,l,2,0]
NextState = [0,3,l,3,0]
PathSoFar = [[0,3,l,3,0],[0,2,r,3,1],[2,2,l,1,1],[1,1,r,2,2],
[3,1,l,0,2],[3,0,r,0,3],[3,2,l,0,1],[2,2,r,1,1],
[3,3,l,0,0]]
SolnSoFar = [crl,mmlr,mcrl,mmlr,crl,cclr,mrl,mclr]
CurrState = [0,3,l,3,0]
NextState = [0,1,r,3,2]
PathSoFar = [[0,1,r,3,2],[0,3,l,3,0],[0,2,r,3,1],[2,2,l,1,1],
[1,1,r,2,2],[3,1,l,0,2],[3,0,r,0,3],[3,2,l,0,1],
[2,2,r,1,1],[3,3,l,0,0]]
SolnSoFar = [cclr,crl,mmlr,mcrl,mmlr,crl,cclr,mrl,mclr]
CurrState = [0,1,r,3,2]
NextState = [1,1,l,2,2]



PathSoFar = [[1,1,l,2,2],[0,1,r,3,2],[0,3,l,3,0],[0,2,r,3,1],
[2,2,l,1,1],[1,1,r,2,2],[3,1,l,0,2],[3,0,r,0,3],
[3,2,l,0,1],[2,2,r,1,1],[3,3,l,0,0]]
SolnSoFar = [mrl,cclr,crl,mmlr,mcrl,mmlr,crl,cclr,mrl,mclr]
CurrState = [1,1,l,2,2]
NextState = [0,1,r,3,2]
NextState = [0,0,r,3,3]
PathSoFar = [[0,0,r,3,3],[1,1,l,2,2],[0,1,r,3,2],[0,3,l,3,0],
[0,2,r,3,1],[2,2,l,1,1],[1,1,r,2,2],[3,1,l,0,2],
[3,0,r,0,3],[3,2,l,0,1],[2,2,r,1,1],[3,3,l,0,0]]
SolnSoFar = [mclr,mrl,cclr,crl,mmlr,mcrl,mmlr,crl,cclr,mrl,mclr]

Solution ...

Transfer a missionary and a cannibal
from the left bank to the right bank.

Transfer a missionary
from the right bank to the left bank.

Transfer two cannibals
from the left bank to the right bank.

Transfer a cannibal
from the right bank to the left bank.

Transfer two missionaries
from the left bank to the right bank.

Transfer a missionary and a cannibal
from the right bank to the left bank.

Transfer two missionaries
from the left bank to the right bank.

Transfer a cannibal
from the right bank to the left bank.

Transfer two cannibals
from the left bank to the right bank.

Transfer a missionary
from the right bank to the left bank.

Transfer a missionary and a cannibal
from the left bank to the right bank.

true

?-



*

7.21 Unit Testing

Unit Testing

*

7.22 Code: Two Unit Tests

Code: Two Unit Tests

test__mlr :-
write(’\n>>> Testing the mlr predicate ...’),nl,
test__mlr_1,
test__mlr_2.

test__mlr_1 :-
write(’Testing: mlr\n’),
Before = [3,3,l,0,0],
show(’Before’,Before),
mlr(Before, After),
show(’After ’,After).

test__mlr_2 :-
write(’Testing: mlr\n’),
Before = [0,3,l,3,0],
show(’Before’,Before),
mlr(Before, After),
show(’After ’,After).

test__mlr_2 :-
write(’Cannot do it: No missionary on the left bank.\n’).

test__feast_state :-
write(’\n>>> Testing the feast_state predicate ...’),nl,
test__fs([2,3,l,1,0]),
test__fs([0,3,l,3,0]),
test__fs([2,1,r,1,2]),
test__fs([3,1,r,0,2]).

test__fs(State) :-
feast_state(State),
write(State), write(’ is a feast state’), nl.

test__fs(State) :-
write(State), write(’ is not a feast state’), nl.

test :-
test__mlr,
test__feast_state.



*

7.23 Demo: Running the Unit Tests

Demo: Running the Unit Tests

?- test.

>>> Testing the mlr predicate ...
Testing: mlr
Before = [3,3,l,0,0]
After = [2,3,r,1,0]
Testing: mlr
Before = [0,3,l,3,0]
Cannot do it: No missionary on the left bank.

>>> Testing the feast_state predicate ...
[2,3,l,1,0] is a feast state
[0,3,l,3,0] is not a feast state
[2,1,r,1,2] is a feast state
[3,1,r,0,2] is not a feast state
true

?-


