
...

5 Lesson 5: List Processing in Prolog

*

Lesson 5: List Processing in Prolog

...

*

5.1 What’s It All About?

What’s It All About?

1. The basic syntax of the list in Prolog is presented.

2. The pattern matching mechanism frequently used in Prolog to deconstruct/construct lists, known as “head/tail”
notation, is introduced.

3. Some list processing programs are written and demoed and discussed.

4. Some list processing exercises are provided.

*

5.2 Representing Lists in Prolog

Representing Lists in Prolog

Lists are represented syntactically in Prolog by placing terms, separated by commas, within square brackets. Some
examples ...

1. [red, yellow, blue]

2. []

3. ["Desde El Alma", "Poema", "Esta Noche de Luna"]

4. [card(jack,heart), card(2,club), card(queen,heart), card(ace,spade), card(10,diamond)]

*

5.3 Head/Tail Notation

Head/Tail Notation

[Head|Tail] represents a list with the first element (the car) represented by Head and the list containing the rest
of the elements (the cdr) represented by Tail.

Some Prolog for thought: What will each variable be bound to as a result of the following Prolog list equations?

1. [H|T] = [red,yellow,blue]

2. [First|Rest] = [one,two]

3. [F|R] = [cat]

4. [A|[B|[C]]] = [efx(red,rouge), efx(yellow,jaun), efx(blue,bleu,bleue)]

*

5.4 Head/Tail Referencing Exercises

Head/Tail Referencing Exercises

In the interest of becoming comfortable with head/tail notation, please read through the following redacted inter-
action, and write down, for each query, how you think that Prolog will respond in terms of variable bindings and
result. Then, after you have done your best to reason your way to responses based on your understanding of the
head/tail mechanism, perform the demo. Compare your results, and do your best to sort out any misunderstandings
that you might have had when mentally doing the exercises.

bash-3.2$ swipl
<<redacted>>

?- [H|T] = [red, yellow, blue, green].
<<redacted>>

?- [H, T] = [red, yellow, blue, green].
<<redacted>>

?- [F|_] = [red, yellow, blue, green].
<<redacted>>

?- [_|[S|_]] = [red, yellow, blue, green].
<<redacted>>

?- [F|[S|R]] = [red, yellow, blue, green].
<<redacted>>

?- List = [this|[and, that]].
<<redacted>>

?- List = [this, and, that].
<<redacted>>

?- [a,[b, c]] = [a, b, c].
<<redacted>>

?- [a|[b, c]] = [a, b, c].
<<redacted>>

?- [cell(Row,Column)|Rest] = [cell(1,1), cell(3,2), cell(1,3)].
<<redacted>>

?- [X|Y] = [one(un, uno), two(dos, deux), three(trois, tres)].
<<redacted>>

?-

*

5.5 Example List Processors

Example List Processors

*

5.6 Demo

Demo

bash-3.2$ swipl
<<redacted>>

?- consult(’list_processors.pro’).
% list_processors.pro compiled 0.00 sec, 45 clauses
true.

?- first([apple],First).
First = apple.

?- first([c,d,e,f,g,a,b],P).
P = c.

?- rest([apple],Rest).
Rest = [].

?- rest([c,d,e,f,g,a,b],Rest).
Rest = [d, e, f, g, a, b].

?- last([peach],Last).
Last = peach

?- last([c,d,e,f,g,a,b],P).
P = b

?- nth(0,[zero,one,two,three,four],Element).
Element = zero

?- nth(3,[four,three,two,one,zero],Element).
Element = one

?- writelist([red,yellow,blue,green,purple,orange]).
red
yellow
blue
green
purple
orange
true.

?- sum([],Sum).
Sum = 0.

?- sum([2,3,5,7,11],SumOfPrimes).
SumOfPrimes = 28.

?- add_first(thing,[],Result).
Result = [thing].

?- add_first(racket,[prolog,haskell,rust],Languages).
Languages = [racket, prolog, haskell, rust].

?- add_last(thing,[],Result).
Result = [thing]

?- add_last(rust,[racket,prolog,haskell],Languages).
Languages = [racket, prolog, haskell, rust]

?- iota(5,Iota5).
Iota5 = [1, 2, 3, 4, 5]

?- iota(9,Iota9).
Iota9 = [1, 2, 3, 4, 5, 6, 7, 8, 9]

?- pick([cherry,peach,apple,blueberry],Pie).
Pie = cherry

?- pick([cherry,peach,apple,blueberry],Pie).
Pie = cherry

?- pick([cherry,peach,apple,blueberry],Pie).
Pie = apple

?- pick([cherry,peach,apple,blueberry],Pie).
Pie = apple

?- pick([cherry,peach,apple,blueberry],Pie).
Pie = blueberry

?- pick([cherry,peach,apple,blueberry],Pie).
Pie = blueberry

?- pick([cherry,peach,apple,blueberry],Pie).
Pie = blueberry

?- pick([cherry,peach,apple,blueberry],Pie).
Pie = cherry

?- make_set([1,1,2,1,2,3,1,2,3,4],Set).
Set = [1, 2, 3, 4]

?- make_set([bit,bot,bet,bot,bot,bit],B).
B = [bet, bot, bit]

?-

*

5.7 Code: First

Code: First

first([H|_], H).

*

5.8 Code: Rest

Code: Rest

rest([_|T], T).

*

5.9 Code: Last

Code: Last

last([H|[]], H).
last([_|T], Result) :- last(T, Result).

*

5.10 Code: Nth

Code: Nth

nth(0,[H|_],H).
nth(N,[_|T],E) :- K is N - 1, nth(K,T,E).

*

5.11 Code: Writelist

Code: Writelist

writelist([]).
writelist([H|T]) :- write(H), nl, writelist(T).

*

5.12 Code: sum

Code: sum

sum([],0).
sum([Head|Tail],Sum) :-
sum(Tail,SumOfTail),
Sum is Head + SumOfTail.

*

5.13 Code: Add first

Code: Add first

add_first(X,L,[X|L]).

*

5.14 Code: Add last

Code: Add last

add_last(X,[],[X]).
add_last(X,[H|T],[H|TX]) :- add_last(X,T,TX).

*

5.15 Code: Iota

Code: Iota

iota(0,[]).
iota(N,IotaN) :-
K is N - 1,
iota(K,IotaK),
add_last(N,IotaK,IotaN).

*

5.16 Code: Pick

Code: Pick

pick(L,Item) :-
length(L,Length),
random(0,Length,RN),
nth(RN,L,Item).

*

5.17 Code: Make set

Code: Make set

make_set([],[]).
make_set([H|T],TS) :-
member(H,T),
make_set(T,TS).

make_set([H|T],[H|TS]) :-
make_set(T,TS).

*

5.18 List Processing Exercises

List Processing Exercises

The list processing exercises posed in this section are suggested by a reading of the following demo. By completing
the exercises, you will be in a position to run a demo quite like that which appears below. Big picture, defining the
predicates, and generating a demo quite like the following demo, is what you are being asked to do in this section of
the lesson.

In short, please do the following:

1. Read the demo, doing your best to make sticky in your mind what the various predicates are intended to do.

2. Write the predicates according to the specifications provided. (Please read the specifications, even if you think
that you have a good idea of what the predicates are intended to do.)

3. Recreate the demo, with the understanding that the parts in which nondeterminism plays a role will be ren-
dered differently from just what you see in the given demo.

*

5.19 Demo

Demo

bash-3.2$ swipl
<<redacted>>

?- consult(’list_processors.pro’).
% list_processors.pro compiled 0.00 sec, 45 clauses
true.

?- product([],P).
P = 1.

?- product([1,3,5,7,9],Product).
Product = 945.

?- iota(9,Iota),product(Iota,Product).
Iota = [1, 2, 3, 4, 5, 6, 7, 8, 9],
Product = 362880

?- make_list(7,seven,Seven).
Seven = [seven, seven, seven, seven, seven, seven, seven]

?- make_list(8,2,List).
List = [2, 2, 2, 2, 2, 2, 2, 2]

?- ?- but_first([a,b,c],X).
X = [b, c].

?- but_last([a,b,c,d,e],X).
X = [a, b, c, d]

?- is_palindrome([x]).
true

?- is_palindrome([a,b,c]).
false.

?- is_palindrome([a,b,b,a]).
true

?- is_palindrome([1,2,3,4,5,4,2,3,1]).
false

?- is_palindrome([c,o,f,f,e,e,e,e,f,f,o,c]).
true

?- noun_phrase(NP).
NP = [the, blue, piano] ;
false.

?- noun_phrase(NP).
NP = [the, electric, flag]

?- noun_phrase(NP).
NP = [the, silver, flag]

?- noun_phrase(NP).
NP = [the, tiny, light]

?- noun_phrase(NP).
NP = [the, unlucky, moon]

?- sentence(S).
S = [the, postmodern, banana, skimmed, the, blue, car]

?- sentence(S).
S = [the, electric, piano, played, the, silver, flag]

?- sentence(S).
S = [the, silver, piano, ate, the, blue, hat]

?- sentence(S).
S = [the, blue, piano, dimmed, the, tiny, hat]

?- sentence(S).
S = [the, blue, hat, saw, the, tiny, robot]

?- sentence(S).
S = [the, silver, flag, played, the, blue, flag]

?- sentence(S).
S = [the, electric, car, tipped, the, tiny, book]

?- sentence(S).

S = [the, postmodern, banana, tipped, the, silver, moon]

?- sentence(S).
S = [the, unlucky, piano, ate, the, silver, car]

?- sentence(S).
S = [the, silver, moon, skimmed, the, unlucky, dress]

?- sentence(S).
S = [the, tiny, moon, dimmed, the, unlucky, robot]

?- sentence(S).
S = [the, electric, banana, dimmed, the, unlucky, flag]

?- sentence(S).
S = [the, postmodern, robot, admired, the, tiny, piano]

?- sentence(S).
S = [the, unlucky, book, dimmed, the, electric, hat]

?- sentence(S).
S = [the, postmodern, flag, tipped, the, unlucky, moon]

?- sentence(S).
S = [the, blue, hat, skimmed, the, tiny, banana]

?-

*

5.20 Specifications

Specifications

1. Define the order 2 predicate called product which takes a list of numbers as an input parameter and produces
the product of the numbers in the list as an output parameter. Hint: Let the sum predicate presented in the
“Examples” section of this lesson be your guide.

2. Define the order 2 predicate called factorial which takes a positive integer as an input parameter and pro-
duces the factorial of the given number as an output parameter. Constraint: Make use of the iota predicate
defined in the “Examples” section of this lesson along with the product predicate.

3. Define the order 3 predicate called make list which takes a nonnegative integer as its first input parameter,
a data item as its second input parameter, and which produces a list consisting of the specified number of
occurrences of the specified piece of data as its output parameter. Constraint: Write this definition recursively.

4. Define the order 2 predicate called but first which takes a non-empty list as input parameter and produces
the “cdr” of the list as its output parameter. Hint: First consisder the case in which the input list is a singleton,
regardless of just what the sole element happens to be. Next, consider a longer list.

5. Define the order 2 predicate called but last which takes a non-empty list as input parameter and produces
the “rdc” of the list as its output parameter. Constraint: Make use of the primitive predicate reverse two
times in defining this predicate. (If you can’t guess how reverse works, just Google it.)

6. Define the order 1 predicate called is palindrome which takes a list as its sole parameter and succeeds only
if the list is a palindrome. Constraints: (1) Use first and last and but first and but last in writing this
function. (2) Use recursion.

7. Define an order 1 predicate called noun phrase which produces a noun phrase of length three consisting of the
word “the” followed by an adjective selected at random from a list of six adjectives followed by a noun selected
at random from a list of eight nouns. Constraints: (1) Come up with your own list of six adjectives and eight
nouns, rather than use mine. (2) Use the pick predicate from the “Exercises” section of this lesson.

8. Define an order 1 predicate called sentence which produces a sentence consisting of a random noun phrase
followed by a past tense verb followed by a noun phrase. Constraints: (1) Use the tokennoun phrase predicate
as well as the pick predicate. (2) Come up with 7 past tense verbs on which to draw.

