
...

1 Lesson #1: Getting Acquainted with Prolog

*

Lesson #1: Getting Acquainted with Prolog

...

*

1.1 What’s It All About?

What’s It All About?

1. The first thing you will need to do in order that you can do some Prolog programming is to download a Prolog
interpreter. The first part of this lesson points you in the right direction to do just that.

2. Then, you will want to get acquainted with the nature of Prolog. Two sample sessions will serve to help you
make this acquaintance, the first of which illustrates how to add bits of knowledge dynamically to a knowledge
base, the second of which illustrates how to statically establish a knowledge base, by loading the knowledge
base from a file.

3. As a side effect of studying these two “Prolog programs”, you will gain some understanding of terms and facts
and rules and queries.

*

1.2 The software

The software

You will need a Prolog interpreter in order to do some Prolog programming. The SWI Prolog interpreter is highly
recommended! You can find the software here: https://www.swi-prolog.org/

You will also need a good text editor with which to create your Prolog source code. I like emacs, but you might like
something else.

*

1.3 First Prolog Experience: Simple Interaction (Three Colors)

First Prolog Experience: Simple Interaction (Three Colors)

The following session features the establishment of a relation consisting of three facts. The relation represents the
facts that blue is a color, that red is a color, and that green is a color. The primitive assert can, as is seen three
times in the session, be used to place a fact in the knowledge base.

*

1.3.1 The Session

The Session

bash-3.2$ swipl
Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 6.2.5)
Copyright (c) 1990-2012 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?- color(blue).
ERROR: toplevel: Undefined procedure: color/1 (DWIM could not correct goal)
?- assert(color(blue)).



true.

?- color(blue).
true.

?- assert(color(red)).
true.

?- assert(color(green)).
true.

?- color(red).
true.

?- color(green).
true.

?- color(yellow).
false.

?- listing(color).
:- dynamic color/1.

color(blue).
color(red).
color(green).

true.

?- halt.
bash-3.2$

*

1.4 Second Prolog Experience: Consulting a KB in a File (Six Colors)

Second Prolog Experience: Consulting a KB in a File (Six Colors)

A Prolog knowledge base is placed in a file called colors.pro. This knowledge base consists of 3 relations. The
primary relation consists of 3 facts, and represents primary colors. The secondary relation consists of 3 facts, and
represents secondary colors. The color relation consists of two rules and represents both the primary colors and the
secondary colors.

The accompanying session incorporates a number of “closed” queries, in which the machine seeks merely to establish
that a fact is or is not in the knowledge base. The session also incorporates a number of “open” queries, in which
information is sought from the knowledge base through the use of variables.

What is with the semicolon in the session? If the system has met with some success, and there are alternate routes
that it might have taken to find success, it will wait for instruction from you with regard to what to do next. If you
type in a semicolon, it will try to succeed in an alternate way. If you type the “Enter” key, it will simply return you
to the top-level prompt.



*

1.4.1 KB: colors.pro

KB: colors.pro

% -----------------------------------------------------------------------
% File: colors.pro
% Line: Six color facts, structured into primaries and secondaries

% -----------------------------------------------------------------------
% primary(P) :: P is a primary color

primary(blue).
primary(red).
primary(yellow).

% -----------------------------------------------------------------------
% secondary(S) :: S is a secondary color

secondary(green).
secondary(orange).
secondary(purple).

% -----------------------------------------------------------------------
% color(C) :: C is a color

color(C) :- primary(C).
color(C) :- secondary(C).

*

1.4.2 The Session

The Session

bash-3.2$ swipl
Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 6.2.5)
Copyright (c) 1990-2012 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?- primary(blue).
ERROR: toplevel: Undefined procedure: primary/1 (DWIM could not correct goal)
?- consult(’colors.pro’).
% colors.pro compiled 0.00 sec, 9 clauses
true.

?- primary(blue).
true.

?- primary(red).
true.



?- primary(green).
false.

?- secondary(green).
true.

?- secondary(purple).
true.

?- secondary(yellow).
false.

?- color(blue).
true

?- color(purple).
true.

?- primary(P).
P = blue ;
P = red ;
P = yellow.

?- secondary(S).
S = green ;
S = orange ;
S = purple.

?- color(C).
C = blue ;
C = red ;
C = yellow ;
C = green ;
C = orange ;
C = purple.

?- listing(primary).
primary(blue).
primary(red).
primary(yellow).

true.

?- listing(secondary).
secondary(green).
secondary(orange).
secondary(purple).

true.

?- listing(color).
color(A) :-
primary(A).
color(A) :-



secondary(A).

true.

?- halt.
bash-3.2$

*

1.5 Snapshot of Emacs with a KB and a Shell

Snapshot of Emacs with a KB and a Shell


