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2.1 What’s It All About?

What’s It All About?

This lesson is about logical computations with normal forms and the resolution principle. Consequently, it can be
viewed as a brief overview of the Prolog inference engine.

*

2.2 The Normal Form Definitions

The Normal Form Definitions

Conjuntive Normal Form

A formula F is said to be in conjunctive normal form if F has the form F1 ∧ F2 ∧ ... ∧ Fn where each of the Fi
is a disjunction of literals.

Examples:

1. ( P ∨ Q ) ∧ ( P ∨ ∼ Q ) ∧ ( ∼ P ∨ ∼ Q )
2. P
3. P ∧ Q

Disjunctive Normal Form

A formula F is said to be in disjunctive normal form if F has the form F1 ∨ F2 ∨ ... ∨ Fn where each of the Fi
is a conjunction of literals.

Examples:

1. ( P ∧ Q ) ∨ ( P ∧ Q ) ∨ ( ∼ P ∧ ∼ Q )
2. P
3. P ∨ Q

*

2.3 Multiple choice question on groups of literals

Multiple choice question on groups of literals

Reflecting upon the definitions of normal forms presented in the previous items, consider the following multiple choice
question:

1. A literal, for example, P, can be considered a disjunction of literals.

2. A literal, for example, P, can be considered a conjunction of literals.

3. Both (1) and (2) are true.



4. Neither (1) nor (2) are true.

*

2.4 Normal Form Conversion Example

Normal Form Conversion Example

Any well formed formula can be converted to a normal form. This is accomplished by judiciously using logical
equivalences.

Example: Converting ( ( P ∨ ∼ Q ) → R ) to DNF

( ( P ∨ ∼ Q ) → R )
=⇒ ∼ ( P ∨ ∼ Q ) ∨ R (switcheroo)
=⇒ ( ∼ P ∧ ∼ ∼ Q ) ∨ R (DeMorgan)
=⇒ ( ∼ P ∧ Q ) ∨ R (double negation)

*

2.5 Pseudocode procedure for converting to normal form

Pseudocode procedure for converting to normal form

The following is a rough procedure for transforming a formula to a normal form:

1. Use the following laws to eliminate the logical connectives → and ↔:

(a) F ↔ G = ( F → G ) ∧ ( G → F )
(b) F → G = ∼ F ∨ G

2. Repeatedly use the double negation law and De Morgan’s laws to bring the negation signs immediately before
atoms:

(a) ∼ ( ∼ F ) = F
(b) ∼ ( F ∨ G ) = ( ∼ F ∧ ∼ G )
(c) ∼ ( F ∧ G ) = ( ∼ F ∨ ∼ G )

3. Repeatedly use the distributive laws, and perhaps other laws, to objtain a normal form.

(a) F ∨ ( G ∧ H ) = ( ( F ∨ G ) ∧ ( F ∨ H ) )
(b) F ∧ ( G ∨ H ) = ( ( F ∧ G ) ∨ ( F ∧ H ) )



*

2.6 Example: Conversion to CNF Using the Pseudocode Procedure

Example: Conversion to CNF Using the Pseudocode Procedure

Transform to CNF: ( P ∨ ∼ Q ) → R

( P ∨ ∼ Q ) → R
=⇒ ∼ ( P ∨ ∼ Q ) ∨ R (switcheroo)
=⇒ ( ∼ P ∧ ∼ ∼ Q ) ∨ R (DeMorgan’s law)
=⇒ ( ∼ P ∧ Q ) ∨ R (double negation)
=⇒ R ∨ ( ∼ P ∧ Q ) (commutative law)
=⇒ ( R ∨ ∼ P ) ∧ ( R ∨ Q ) (distributive law)

*

2.7 Normal form conversion problems

Normal form conversion problems

1. Transform to DNF: ( P ∧ ( Q → R ) ) → S
2. Transform to DNF: ∼ ( P ∨ ∼ Q ) ∧ ( S → T )
3. Transform to DNF: ( P → Q ) → R
4. Transform to CNF: P ∨ ( ∼ P ∧ Q ∧ R )
5. Transform to CNF: ( ∼ P ∧ Q ) ∨ ( P ∧ ∼ Q )

*

2.8 Normal form conversion solutions

Normal form conversion solutions

1. Transform to DNF: ( P ∧ ( Q → R ) ) → S

( P ∧ ( Q → R ) ) → S

=⇒ ( P ∧ ( ∼ Q ∨ R ) ) → S (switcheroo)
=⇒ ∼ ( P ∧ ( ∼ Q ∨ R ) ) ∨ S (switcheroo)
=⇒ ( ∼ P ∨ ∼ ( ∼ Q ∨ R ) ) ∨ S (DeMorgan’s law)
=⇒ ( ∼ P ∨ ( ∼ ∼ Q ∧ ∼ R ) ) ∨ S (DeMorgan’s law)
=⇒ ( ∼ P ∨ ( Q ∧ ∼ R ) ) ∨ S (double negation)
=⇒ ∼ P ∨ ( Q ∧ ∼ R ) ∨ S (commutativity)

2. Transform to DNF: ∼ ( P ∨ ∼ Q ) ∧ ( S → T )

∼ ( P ∨ ∼ Q ) ∧ ( S → T )

=⇒ ∼ ( P ∨ ∼ Q ) ∧ ( ∼ S ∨ T ) (switcheroo)
=⇒ ( ∼ P ∧ ∼ ∼ Q ) ∧ ( ∼ S ∨ T ) (DeMorgan’s law)
=⇒ ( ∼ P ∧ Q ) ∧ ( ∼ S ∨ T ) (double negation)
=⇒ ( ( ∼ P ∧ Q ) ∧ ∼ S ) ∨ ( ( ∼ P ∧ Q ) ∧ T ) (distributive law)
=⇒ ( ∼ P ∧ Q ∧ ∼ S ) ∨ ( ( ∼ P ∧ Q ) ∧ T ) (associative law)
=⇒ ( ∼ P ∧ Q ∧ ∼ S ) ∨ ( ∼ P ∧ Q ∧ T ) (commutative law)

3. Transform to DNF: ( P → Q ) → R

( P → Q ) → R

=⇒ ( ∼ P ∨ Q ) → R (switcheroo)
=⇒ ∼ ( ∼ P ∨ Q ) ∨ R (switcheroo)
=⇒ ( ∼ ∼ P ∧ ∼ Q ) ∨ R (DeMorgan’s law)
=⇒ ( P ∧ ∼ Q ) ∨ R (double negation)



4. Transform to CNF: P ∨ ( ∼ P ∧ Q ∧ R )

P ∨ ( ∼ P ∧ Q ∧ R )

=⇒ P ∨ ( ∼ P ∧ ( Q ∧ R ) ) (associative law)
=⇒ ( P ∨ ∼ P ) ∧ ( P ∨ ( Q ∧ R ) ) (distributive law)
=⇒ ( P ∨ ∼ P ) ∧ ( ( P ∨ Q ) ∧ ( P ∨ R ) ) (distributive law)
=⇒ ( P ∨ ∼ P ) ∧ ( P ∨ Q ) ∧ ( P ∨ R ) (associative law)

5. Transform to CNF: ( ∼ P ∧ Q ) ∨ ( P ∧ ∼ Q )

( ∼ P ∧ Q ) ∨ ( P ∧ ∼ Q )

=⇒ ( ( ∼ P ∧ Q ) ∨ P ) ∧ ( ( ∼ P ∧ Q ) ∨ ∼ Q ) (distributive law)
=⇒ ( P ∨ ( ∼ P ∧ Q ) ) ∧ ( ( ∼ P ∧ Q ) ∨ ∼ Q ) (communtative law)
=⇒ ( ( P ∨ ∼ P ) ∧ ( P ∨ Q ) ) ∧ ( ( ∼ P ∧ Q ) ∨ ∼ Q ) (distributive law)
=⇒ ( P ∨ ∼ P ) ∧ ( P ∨ Q ) ∧ ( ( ∼ P ∧ Q ) ∨ ∼ Q ) (associative law)
=⇒ ( P ∨ ∼ P ) ∧ ( P ∨ Q ) ∧ ( ∼ Q ∨ ( ∼ P ∧ Q ) ) (commutative law)
=⇒ ( P ∨ ∼ P ) ∧ ( P ∨ Q ) ∧ ( ( ∼ Q ∨ ∼ P ) ∧ ( ∼ Q ∨ Q ) ) (distributive law)
=⇒ ( P ∨ ∼ P ) ∧ ( P ∨ Q ) ∧ ( ∼ Q ∨ ∼ P ) ∧ ( ∼ Q ∨ Q ) (associative law)
=⇒ T ∧ ( P ∨ Q ) ∧ ( ∼ Q ∨ ∼ P ) ∧ ( ∼ Q ∨ Q ) (complementary disjunction)
=⇒ ( P ∨ Q ) ∧ ( ∼ Q ∨ ∼ P ) ∧ ( ∼ Q ∨ Q ) (identity for and)
=⇒ ( P ∨ Q ) ∧ ( ∼ Q ∨ ∼ P ) ∧ T (complementary disjunction)
=⇒ ( P ∨ Q ) ∧ ( ∼ Q ∨ ∼ P ) (identity for and)

*

2.9 Definition of Logical Consequence

Definition of Logical Consequence

Formula G is a logical consequence of formulas F1, F2, ..., Fn if G is true for any interpretation in which F1, F2, ...,
Fn are true.

Alternate Take 1
• Theorem 1: If the formula ( (F1 ∧ F2 ∧ ... ∧ Fn) → G ) is valid, then G is a logical consequence of F1, F2,
..., Fn.

• Proof

Suppose that ( (F1 ∧ F2 ∧ ... ∧ Fn) → G ) is valid.

1. Then G is true for any interpretation in which F1, F2, ..., Fn are true. (definitions of ∧ and →)
2. So G is a logical consequence of formulas F1, F2, ..., Fn. (definition of logical consequence)

Alternate Take 2

• Theorem 2: If the formula ( (F1 ∧ F2 ∧ ... ∧ Fn) ∧ ∼ G ) is inconsistent, then G is a logical consequence of
F1, F2, ..., Fn.

• Proof

Suppose that ( (F1 ∧ F2 ∧ ... ∧ Fn) ∧ ∼ G ) is inconsistent.

1. Then ∼ ( (F1 ∧ F2 ∧ ... ∧ Fn) ∧ ∼ G ) is valid. (definitions of ∼ and validity)
2. And ( ∼ (F1 ∧ F2 ∧ ... ∧ Fn) ∨ ∼ ∼ G ) is valid. (DeMorgan’s law)
3. And ( ∼ (F1 ∧ F2 ∧ ... ∧ Fn) ∨ G ) is valid. (double negagion)
4. And ( (F1 ∧ F2 ∧ ... ∧ Fn) → G ) is valid. (switcheroo)



5. So G is a logical consequence of formulas F1, F2, ..., Fn. (Theorem 1)

*

2.10 Logical Consequence Example

Logical Consequence Example

Show that ∼ P (G) is a logical consequence of ( P → Q ) and ∼ Q (F1 and F2) using:

1. the definition of logical consequence

2. the validity approach (alternate take 1)

3. the inconsistency approach (alternate take 2)

Way 1: using the definition of logical consequence ...

F1 F2 G
P Q ( P → Q ) ∼ Q ∼ P
T T T F F
T F F T F
F T T F T
F F T T T

Way 2: the validity approach (alternate take 1)

F1 F2 F1 ∧ F2 G ( F1 ∧ F2 ) → G
P Q ( P → Q ) ∼ Q ( P → Q ) ∧ ∼ Q ∼ P ( ( P → Q ) ∧ ∼ Q ) → ∼ P
T T T F F F T
T F F T F F T
F T T F F T T
F F T T T T T

Way 3: the inconsistency approach (alternate take 2)

F1 F2 F1 ∧ F2 G ∼ G ( F1 ∧ F2 ) ∧ ∼ G
P Q ( P → Q ) ∼ Q ( P → Q ) ∧ ∼ Q ∼ P ∼ ∼ P ( ( P → Q ) ∧ ∼ Q ) ∧ ∼ ∼ P
T T T F F F T F
T F F T F F T F
F T T F F T F F
F F T T T T F F

*

2.11 The Resolution Principle (The Big Picture)

The Resolution Principle (The Big Picture)

The truth table approach to verifying logical consequence turns out to be too cumbersome to serve as a basis for
logic programming languages. A much more computationally tractable approach to verifying logical consequence is
known as “resolution”. Resolution inference is based on Robinsons Resolution Principle. (A Machine-Oriented Logic
based on the Resolution Principle, JACM, 1965)



Robinson’s Approach to Demonstrating Logical Consequence (Approach 3)

Given a set W = F1, F2, ..., Fn of WFFs and a goal WFF G, you can show that G is a logical consequence of W by
the following method:

1. Convert the set W to a set S of “clauses”.
2. Add the negation of G to the set S of clauses, calling the result S+.
3. Perform a “resolution deduction” of S+ to obtain the “empty clause”.

This method, augmented with a means by which to “unify” variables, is the essential mechanism of computation in
Prolog.

*

2.12 The Resolution Principle

The Resolution Principle

*

2.12.1 Clauses

Clauses

A clause is a disjunction of literals. For example, the following is a clause: ( P ∨ ∼ Q ∨ ∼ R ∨ S )

Two literals are complementary literals if one is the negation of the other. For example, P and ∼P are comple-
mentary literals.

*

2.12.2 The Resolution Principle

The Resolution Principle

For any two clauses C1 and C2, if there is a literal L1 in C1 that is complementary to a literal L2 in C2, then delete
L1 and L2 from C1 and C2, repsectively, and construct the disjunction of the remaining clauses. The constructed
clause is a resovent of C1 and C2.

*

2.12.3 Note

Note

It turns out that the resolvent C of two clauses C1 and C2 is a logical consequence of C1 and C2.

*

2.12.4 Questions

Questions

1. What is the resolvent of: ( P ∨ R ) and ( ∼ P ∨ ∼ Q )?

2. What is the resolvent of: ( ∼ P ∨ Q ∨ R ) and ( ∼ Q ∨ S )?

*



2.13 Resolution Deduction

Resolution Deduction

*

2.13.1 Definition

Definition

Given a set S of clauses, a resulution deduction of clause C from S is a finite sequence C1, C2, ..., Ck of clauses
such that each Ci is either a clause in S or a resolvent of clauses preceding Ci and Ck = C. We say that a clause C
is derived from S if there is a deduction from S to C.

*

2.13.2 Notation

Notation

1. The symbol ! denotes a formula that is always false.
2. The symbol " denotes a formula that is always true.

*

2.13.3 Definition

Definition

A deduction of ! from S is called a refulation of S.

*

2.13.4 Observation / Important Note

Observation / Important Note

To show that a clause G is a logical consequence of a set S of clauses, all you need to do is negate G and refute the
set consisting of S augmented with the negation of G.



*

2.14 Example (logical consequence by refutation)

Example (logical consequence by refutation)

Show that G = P is a logical consequence of S = { ( P ∨ Q ), ∼ Q }.

by:
1. Negating G

2. Adding the neggation of G to S, calling the result S+

3. Refuting S+

1. Determine the negation of the goal: ∼ P
2. Create S+ = { ( P ∨ Q ), ∼ Q, ∼ P }.
3. Do the refutation ...

(a) ( P ∨ Q ) element of S
(b) ∼ Q element of S
(c) P resolution principle
(d) ∼ P negation of goal
(e) ! resolution priniciple

*

2.15 Refutation tree for the previous example

Refutation tree for the previous example

An alternative representation of the linear refutation with citations is the “refutation tree”:

...



*

2.16 Example (logical consequence by refutation)

Example (logical consequence by refutation)

Show that G = R is a logical consequence of S = { ( P ∨ Q ), ( ∼ Q ∨ R ), ∼ P}.

1. Determine the negation of the goal: ∼ R
2. Create S+ = { ( P ∨ Q ), ( ∼ Q ∨ R ), ∼ P, ∼ R}.
3. Do the refutation ...

(a) ( P ∨ Q ) element of S+
(b) ( ∼ Q ∨ R ) element of S+
(c) ( P ∨ R ) resolution of (a) and (b)
(d) ∼ P element of S+
(e) R resolution (c) and (d)
(f) ∼ R element of S+
(g) ! resolution of (e) and (f)

*

2.17 Exercise (logical consequence by refutation)

Exercise (logical consequence by refutation)

Draw the refutation tree corresponding to the linear refutation just presented.


