Lesson \#2: Computing with Normal Forms

What's It All About?

This lesson is about logical computations with normal forms and the resolution principle. Consequently, it can be viewed as a brief overview of the Prolog inference engine.

The Normal Form Definitions

Conjuntive Normal Form

A formula F is said to be in conjunctive normal form if F has the form $\mathrm{F} 1 \wedge \mathrm{~F} 2 \wedge \ldots \wedge \mathrm{Fn}$ where each of the Fi is a disjunction of literals.

Examples:

1. $(\mathrm{P} \vee \mathrm{Q}) \wedge(\mathrm{P} \vee \sim \mathrm{Q}) \wedge(\sim \mathrm{P} \vee \sim \mathrm{Q})$
2. P
3. $\mathrm{P} \wedge \mathrm{Q}$

Disjunctive Normal Form

A formula F is said to be in disjunctive normal form if F has the form $\mathrm{F} 1 \vee \mathrm{~F} 2 \vee \ldots \vee \mathrm{Fn}$ where each of the Fi is a conjunction of literals.

Examples:

1. $(\mathrm{P} \wedge \mathrm{Q}) \vee(\mathrm{P} \wedge \mathrm{Q}) \vee(\sim \mathrm{P} \wedge \sim \mathrm{Q})$
2. P
3. $\mathrm{P} \vee \mathrm{Q}$

Multiple choice question on groups of literals

Reflecting upon the definitions of normal forms presented in the previous items, consider the following multiple choice question:

1. A literal, for example, P , can be considered a disjunction of literals.
2. A literal, for example, P , can be considered a conjunction of literals.
3. Both (1) and (2) are true.
4. Neither (1) nor (2) are true.

Normal Form Conversion Example

Any well formed formula can be converted to a normal form. This is accomplished by judiciously using logical equivalences.

Example: Converting (($\mathbf{P} \vee \sim \mathbf{Q}) \rightarrow \mathbf{R})$ to DNF

$$
\begin{aligned}
& ((\mathrm{P} \vee \sim \mathrm{Q}) \rightarrow \mathrm{R}) \\
& \Longrightarrow \sim(\mathrm{P} \vee \sim \mathrm{Q}) \vee \mathrm{R} \text { (switcheroo) } \\
& \Longrightarrow(\sim \mathrm{P} \wedge \sim \sim \mathrm{Q}) \vee \mathrm{R} \text { (DeMorgan) } \\
& \Longrightarrow(\sim \mathrm{P} \wedge \mathrm{Q}) \vee \mathrm{R} \text { (double negation) }
\end{aligned}
$$

Pseudocode procedure for converting to normal form

The following is a rough procedure for transforming a formula to a normal form:

1. Use the following laws to eliminate the logical connectives \rightarrow and \leftrightarrow :
(a) $\mathrm{F} \leftrightarrow \mathrm{G}=(\mathrm{F} \rightarrow \mathrm{G}) \wedge(\mathrm{G} \rightarrow \mathrm{F})$
(b) $\mathrm{F} \rightarrow \mathrm{G}=\sim \mathrm{F} \vee \mathrm{G}$
2. Repeatedly use the double negation law and De Morgan's laws to bring the negation signs immediately before atoms:
(a) $\sim(\sim \mathrm{F})=\mathrm{F}$
(b) $\sim(\mathrm{F} \vee \mathrm{G})=(\sim \mathrm{F} \wedge \sim \mathrm{G})$
(c) $\sim(\mathrm{F} \wedge \mathrm{G})=(\sim \mathrm{F} \vee \sim \mathrm{G})$
3. Repeatedly use the distributive laws, and perhaps other laws, to objtain a normal form.
(a) $\mathrm{F} \vee(\mathrm{G} \wedge \mathrm{H})=((\mathrm{F} \vee \mathrm{G}) \wedge(\mathrm{F} \vee \mathrm{H}))$
(b) $\mathrm{F} \wedge(\mathrm{G} \vee \mathrm{H})=((\mathrm{F} \wedge \mathrm{G}) \vee(\mathrm{F} \wedge \mathrm{H}))$

Example: Conversion to CNF Using the Pseudocode Procedure

Transform to CNF: ($\mathrm{P} \vee \sim \mathrm{Q}) \rightarrow \mathrm{R}$

$$
\begin{aligned}
& (\mathrm{P} \vee \sim \mathrm{Q}) \rightarrow \mathrm{R} \\
& \Longrightarrow \sim(\mathrm{P} \vee \sim \mathrm{Q}) \vee \mathrm{R} \text { (switcheroo) } \\
& \Longrightarrow(\sim \mathrm{P} \wedge \sim \sim \mathrm{Q}) \vee \mathrm{R} \text { (DeMorgan's law) } \\
& \Longrightarrow(\sim \mathrm{P} \wedge \mathrm{Q}) \vee \mathrm{R} \text { (double negation) } \\
& \Longrightarrow \mathrm{R} \vee(\sim \mathrm{P} \wedge \mathrm{Q})(\text { commutative law) } \\
& \Rightarrow(\mathrm{R} \vee \sim \mathrm{P}) \wedge(\mathrm{R} \vee \mathrm{Q}) \text { (distributive lavi) }
\end{aligned}
$$

Normal form conversion problems

1. Transform to DNF: $(\mathrm{P} \wedge(\mathrm{Q} \rightarrow \mathrm{R})) \rightarrow \mathrm{S}$
2. Transform to DNF: $\sim(\mathrm{P} \vee \sim \mathrm{Q}) \wedge(\mathrm{S} \rightarrow \mathrm{T})$
3. Transform to DNF: $(\mathrm{P} \rightarrow \mathrm{Q}) \rightarrow \mathrm{R}$
4. Transform to CNF: $\mathrm{P} \vee(\sim \mathrm{P} \wedge \mathrm{Q} \wedge \mathrm{R})$
5. Transform to CNF: $(\sim \mathrm{P} \wedge \mathrm{Q}) \vee(\mathrm{P} \wedge \sim \mathrm{Q})$

Normal form conversion solutions

1. Transform to DNF: $(\mathrm{P} \wedge(\mathrm{Q} \rightarrow \mathrm{R})) \rightarrow \mathrm{S}$

$$
\begin{aligned}
& (\mathrm{P} \wedge(\mathrm{Q} \rightarrow \mathrm{R})) \rightarrow \mathrm{S} \\
& \Longrightarrow(\mathrm{P} \wedge(\sim \mathrm{Q} \vee \mathrm{R})) \rightarrow \mathrm{S} \text { (switcheroo) } \\
& \Longrightarrow \sim(\mathrm{P} \wedge(\sim \mathrm{Q} \vee \mathrm{R})) \vee \mathrm{S} \text { (switcheroo) } \\
& \Longrightarrow(\sim \mathrm{P} \vee \sim(\sim \mathrm{Q} \vee \mathrm{R})) \vee \mathrm{S} \text { (DeMorgan's law) } \\
& \Longrightarrow(\sim \mathrm{P} \vee(\sim \sim \mathrm{Q} \wedge \sim \mathrm{R})) \vee \mathrm{S} \text { (DeMorgan's law) } \\
& \Longrightarrow(\sim \mathrm{P} \vee(\mathrm{Q} \wedge \sim \mathrm{R})) \vee \mathrm{S} \text { (double negation) } \\
& \Longrightarrow \sim \mathrm{P} \vee(\mathrm{Q} \wedge \sim \mathrm{R}) \vee \mathrm{S} \text { (commutativity) }
\end{aligned}
$$

2. Transform to DNF: $\sim(\mathrm{P} \vee \sim \mathrm{Q}) \wedge(\mathrm{S} \rightarrow \mathrm{T})$
$\sim(\mathrm{P} \vee \sim \mathrm{Q}) \wedge(\mathrm{S} \rightarrow \mathrm{T})$
$\Longrightarrow \sim(\mathrm{P} \vee \sim \mathrm{Q}) \wedge(\sim \mathrm{S} \vee \mathrm{T})$ (switcheroo)
$\Longrightarrow(\sim \mathrm{P} \wedge \sim \sim \mathrm{Q}) \wedge(\sim \mathrm{S} \vee \mathrm{T})$ (DeMorgan's law)
$\Longrightarrow(\sim \mathrm{P} \wedge \mathrm{Q}) \wedge(\sim \mathrm{S} \vee \mathrm{T})$ (double negation)
$\Longrightarrow((\sim \mathrm{P} \wedge \mathrm{Q}) \wedge \sim \mathrm{S}) \vee((\sim \mathrm{P} \wedge \mathrm{Q}) \wedge \mathrm{T})$ (distributive law)
$\Longrightarrow(\sim \mathrm{P} \wedge \mathrm{Q} \wedge \sim \mathrm{S}) \vee((\sim \mathrm{P} \wedge \mathrm{Q}) \wedge \mathrm{T})$ (associative law)
$\Longrightarrow(\sim \mathrm{P} \wedge \mathrm{Q} \wedge \sim \mathrm{S}) \vee(\sim \mathrm{P} \wedge \mathrm{Q} \wedge \mathrm{T})$ (commutative law)
3. Transform to DNF: $(\mathrm{P} \rightarrow \mathrm{Q}) \rightarrow \mathrm{R}$

$$
\begin{aligned}
& (\mathrm{P} \rightarrow \mathrm{Q}) \rightarrow \mathrm{R} \\
& \Longrightarrow(\sim \mathrm{P} \vee \mathrm{Q}) \rightarrow \mathrm{R} \text { (switcheroo) } \\
& \Longrightarrow \sim(\sim \mathrm{P} \vee \mathrm{Q}) \vee \mathrm{R} \text { (switcheroo) } \\
& \Longrightarrow(\sim \sim \mathrm{P} \wedge \sim \mathrm{Q}) \vee \mathrm{R} \text { (DeMorgan's law) } \\
& \Longrightarrow(\mathrm{P} \wedge \sim \mathrm{Q}) \vee \mathrm{R} \text { (double negation) }
\end{aligned}
$$

4. Transform to CNF: $\mathrm{P} \vee(\sim \mathrm{P} \wedge \mathrm{Q} \wedge \mathrm{R})$
$\mathrm{P} \vee(\sim \mathrm{P} \wedge \mathrm{Q} \wedge \mathrm{R})$
$\Longrightarrow \mathrm{P} \vee(\sim \mathrm{P} \wedge(\mathrm{Q} \wedge \mathrm{R}))$ (associative law)
$\Longrightarrow(\mathrm{P} \vee \sim \mathrm{P}) \wedge(\mathrm{P} \vee(\mathrm{Q} \wedge \mathrm{R}))$ (distributive law)
$\Longrightarrow(\mathrm{P} \vee \sim \mathrm{P}) \wedge((\mathrm{P} \vee \mathrm{Q}) \wedge(\mathrm{P} \vee \mathrm{R}))$ (distributive law)
$\Longrightarrow(\mathrm{P} \vee \sim \mathrm{P}) \wedge(\mathrm{P} \vee \mathrm{Q}) \wedge(\mathrm{P} \vee \mathrm{R})$ (associative law)
5. Transform to CNF: $(\sim \mathrm{P} \wedge \mathrm{Q}) \vee(\mathrm{P} \wedge \sim \mathrm{Q})$
$(\sim \mathrm{P} \wedge \mathrm{Q}) \vee(\mathrm{P} \wedge \sim \mathrm{Q})$
$\Longrightarrow((\sim \mathrm{P} \wedge \mathrm{Q}) \vee \mathrm{P}) \wedge((\sim \mathrm{P} \wedge \mathrm{Q}) \vee \sim \mathrm{Q})$ (distributive law)
$\Longrightarrow(\mathrm{P} \vee(\sim \mathrm{P} \wedge \mathrm{Q})) \wedge((\sim \mathrm{P} \wedge \mathrm{Q}) \vee \sim \mathrm{Q})$ (communtative law)
$\Longrightarrow((\mathrm{P} \vee \sim \mathrm{P}) \wedge(\mathrm{P} \vee \mathrm{Q})) \wedge((\sim \mathrm{P} \wedge \mathrm{Q}) \vee \sim \mathrm{Q})$ (distributive law)
$\Longrightarrow(\mathrm{P} \vee \sim \mathrm{P}) \wedge(\mathrm{P} \vee \mathrm{Q}) \wedge((\sim \mathrm{P} \wedge \mathrm{Q}) \vee \sim \mathrm{Q})$ (associative law)
$\Longrightarrow(\mathrm{P} \vee \sim \mathrm{P}) \wedge(\mathrm{P} \vee \mathrm{Q}) \wedge(\sim \mathrm{Q} \vee(\sim \mathrm{P} \wedge \mathrm{Q}))$ (commutative law)
$\Longrightarrow(\mathrm{P} \vee \sim \mathrm{P}) \wedge(\mathrm{P} \vee \mathrm{Q}) \wedge((\sim \mathrm{Q} \vee \sim \mathrm{P}) \wedge(\sim \mathrm{Q} \vee \mathrm{Q}))$ (distributive law)
$\Longrightarrow(\mathrm{P} \vee \sim \mathrm{P}) \wedge(\mathrm{P} \vee \mathrm{Q}) \wedge(\sim \mathrm{Q} \vee \sim \mathrm{P}) \wedge(\sim \mathrm{Q} \vee \mathrm{Q})$ (associative law)
$\Longrightarrow \mathrm{T} \wedge(\mathrm{P} \vee \mathrm{Q}) \wedge(\sim \mathrm{Q} \vee \sim \mathrm{P}) \wedge(\sim \mathrm{Q} \vee \mathrm{Q})$ (complementary disjunction)
$\Longrightarrow(\mathrm{P} \vee \mathrm{Q}) \wedge(\sim \mathrm{Q} \vee \sim \mathrm{P}) \wedge(\sim \mathrm{Q} \vee \mathrm{Q})$ (identity for and)
$\Longrightarrow(\mathrm{P} \vee \mathrm{Q}) \wedge(\sim \mathrm{Q} \vee \sim \mathrm{P}) \wedge \mathrm{T}$ (complementary disjunction)
$\Longrightarrow(\mathrm{P} \vee \mathrm{Q}) \wedge(\sim \mathrm{Q} \vee \sim \mathrm{P})$ (identity for and)

Definition of Logical Consequence

Formula G is a logical consequence of formulas $F_{1}, F_{2}, \ldots, F_{n}$ if G is true for any interpretation in which F_{1}, F_{2}, \ldots, F_{n} are true.

Alternate Take 1

- Theorem 1: If the formula $\left(\left(\mathrm{F}_{1} \wedge \mathrm{~F}_{2} \wedge \ldots \wedge \mathrm{~F}_{n}\right) \rightarrow \mathrm{G}\right)$ is valid, then G is a logical consequence of $\mathrm{F}_{1}, \mathrm{~F}_{2}$, ..., F_{n}.
- Proof

Suppose that $\left(\left(\mathrm{F}_{1} \wedge \mathrm{~F}_{2} \wedge \ldots \wedge \mathrm{~F}_{n}\right) \rightarrow \mathrm{G}\right)$ is valid.

1. Then G is true for any interpretation in which $F_{1}, F_{2}, \ldots, F_{n}$ are true. (definitions of \wedge and \rightarrow)
2. So G is a logical consequence of formulas $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{n}$. (definition of logical consequence)

Alternate Take 2

- Theorem 2: If the formula $\left(\left(\mathrm{F}_{1} \wedge \mathrm{~F}_{2} \wedge \ldots \wedge \mathrm{~F}_{n}\right) \wedge \sim \mathrm{G}\right)$ is inconsistent, then G is a logical consequence of $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{n}$.

- Proof

Suppose that $\left(\left(\mathrm{F}_{1} \wedge \mathrm{~F}_{2} \wedge \ldots \wedge \mathrm{~F}_{n}\right) \wedge \sim \mathrm{G}\right)$ is inconsistent.

1. Then $\sim\left(\left(\mathrm{F}_{1} \wedge \mathrm{~F}_{2} \wedge \ldots \wedge \mathrm{~F}_{n}\right) \wedge \sim \mathrm{G}\right)$ is valid. (definitions of \sim and validity)
2. And $\left(\sim\left(\mathrm{F}_{1} \wedge \mathrm{~F}_{2} \wedge \ldots \wedge \mathrm{~F}_{n}\right) \vee \sim \sim \mathrm{G}\right)$ is valid. (DeMorgan's law)
3. And $\left(\sim\left(\mathrm{F}_{1} \wedge \mathrm{~F}_{2} \wedge \ldots \wedge \mathrm{~F}_{n}\right) \vee \mathrm{G}\right)$ is valid. (double negagion)
4. And $\left(\left(\mathrm{F}_{1} \wedge \mathrm{~F}_{2} \wedge \ldots \wedge \mathrm{~F}_{n}\right) \rightarrow \mathrm{G}\right)$ is valid. (switcheroo)
5. So G is a logical consequense of formulas $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{n}$. (Theorem 1)

Logical Consequence Example

Show that $\sim \mathrm{P}(\mathrm{G})$ is a logical consequence of $(\mathrm{P} \rightarrow \mathrm{Q})$ and $\sim \mathrm{Q}$ (F1 and F2) using:

1. the definition of logical consequence
2. the validity approach (alternate take 1)
3. the inconsistency approach (alternate take 2)

Way 1: using the definition of logical consequence ...

		F_{1}	$\mathrm{~F}_{2}$	G
P	Q	$(\mathrm{P} \rightarrow \mathrm{Q})$	$\sim \mathrm{Q}$	$\sim \mathrm{P}$
T	T	T	F	F
T	F	F	T	F
F	T	T	F	T
F	F	T	T	T

Way 2: the validity approach (alternate take 1)

		F_{1}	$\mathrm{~F}_{2}$	$\mathrm{~F}_{1} \wedge \mathrm{~F}_{2}$	G	$\left(\mathrm{F}_{1} \wedge \mathrm{~F}_{2}\right) \rightarrow \mathrm{G}$
P	Q	$(\mathrm{P} \rightarrow \mathrm{Q})$	$\sim \mathrm{Q}$	$(\mathrm{P} \rightarrow \mathrm{Q}) \wedge \sim \mathrm{Q}$	$\sim \mathrm{P}$	$((\mathrm{P} \rightarrow \mathrm{Q}) \wedge \sim \mathrm{Q}) \rightarrow \sim \mathrm{P}$
T	T	T	F	F	F	T
T	F	F	T	F	F	T
F	T	T	F	F	T	T
F	F	T	T	T	T	T

Way 3: the inconsistency approach (alternate take 2)

		F_{1}	$\mathrm{~F}_{2}$	$\mathrm{~F}_{1} \wedge \mathrm{~F}_{2}$	G	$\sim \mathrm{G}$	$\left(\mathrm{F}_{1} \wedge \mathrm{~F}_{2}\right) \wedge \sim \mathrm{G}$
P	Q	$(\mathrm{P} \rightarrow \mathrm{Q})$	$\sim \mathrm{Q}$	$(\mathrm{P} \rightarrow \mathrm{Q}) \wedge \sim \mathrm{Q}$	$\sim \mathrm{P}$	$\sim \sim \mathrm{P}$	$((\mathrm{P} \rightarrow \mathrm{Q}) \wedge \sim \mathrm{Q}) \wedge \sim \sim \mathrm{P}$
T	T	T	F	F	F	T	F
T	F	F	T	F	F	T	F
F	T	T	F	F	T	F	F
F	F	T	T	T	T	F	F

The Resolution Principle (The Big Picture)

The truth table approach to verifying logical consequence turns out to be too cumbersome to serve as a basis for logic programming languages. A much more computationally tractable approach to verifying logical consequence is known as "resolution". Resolution inference is based on Robinsons Resolution Principle. (A Machine-Oriented Logic based on the Resolution Principle, JACM, 1965)

Robinson's Approach to Demonstrating Logical Consequence (Approach 3)

Given a set $\mathrm{W}=\mathrm{F} 1, \mathrm{~F} 2, \ldots$, Fn of WFFs and a goal WFF G, you can show that G is a logical consequence of W by the following method:

1. Convert the set W to a set S of "clauses".
2. Add the negation of G to the set S of clauses, calling the result $S+$.
3. Perform a "resolution deduction" of $\mathrm{S}+$ to obtain the "empty clause".

This method, augmented with a means by which to "unify" variables, is the essential mechanism of computation in Prolog.

The Resolution Principle

Clauses

A clause is a disjunction of literals. For example, the following is a clause: ($\mathrm{P} \vee \sim \mathrm{Q} \vee \sim \mathrm{R} \vee \mathrm{S}$)

Two literals are complementary literals if one is the negation of the other. For example, P and $\sim \mathrm{P}$ are complementary literals.

The Resolution Principle

For any two clauses C1 and C2, if there is a literal L1 in C1 that is complementary to a literal L2 in C2, then delete L1 and L2 from C1 and C2, repsectively, and construct the disjunction of the remaining clauses. The constructed clause is a resovent of C 1 and C 2 .

Note

It turns out that the resolvent C of two clauses C 1 and C 2 is a logical consequence of C 1 and C 2 .

Questions

1. What is the resolvent of: $(P \vee R)$ and ($\sim P \vee \sim Q)$?
2. What is the resolvent of: $(\sim P \vee Q \vee R)$ and $(\sim Q \vee S)$?

Resolution Deduction

Definition

Given a set S of clauses, a resulution deduction of clause C from S is a finite sequence $\mathrm{C} 1, \mathrm{C} 2, \ldots, \mathrm{Ck}$ of clauses such that each Ci is either a clause in S or a resolvent of clauses preceding Ci and $\mathrm{Ck}=\mathrm{C}$. We say that a clause C is derived from S if there is a deduction from S to C.

Notation

1. The symbol \square denotes a formula that is always false.
2. The symbol denotes a formula that is always true.

Definition

A deduction of \square from S is called a refulation of S.

Observation / Important Note

To show that a clause G is a logical consequence of a set S of clauses, all you need to do is negate G and refute the set consisting of S augmented with the negation of G .

Example (logical consequence by refutation)

Show that $\mathrm{G}=\mathrm{P}$ is a logical consequence of $\mathrm{S}=\{(\mathrm{P} \vee \mathrm{Q}), \sim \mathrm{Q}\}$.
by:

1. Negating G
2. Adding the neggation of G to S , calling the result $\mathrm{S}+$
3. Refuting S+
4. Determine the negation of the goal: $\sim \mathrm{P}$
5. Create $\mathrm{S}+=\{(\mathrm{P} \vee \mathrm{Q}), \sim \mathrm{Q}, \sim \mathrm{P}\}$.
6. Do the refutation ...
(a) ($\mathrm{P} \vee \mathrm{Q}$) element of S
(b) $\sim \mathrm{Q}$ element of S
(c) P resolution principle
(d) ~ P negation of goal
(e) \square resolution priniciple

Refutation tree for the previous example

An alternative representation of the linear refutation with citations is the "refutation tree":

Example (logical consequence by refutation)

Show that $\mathrm{G}=\mathrm{R}$ is a logical consequence of $\mathrm{S}=\{(\mathrm{P} \vee \mathrm{Q}),(\sim \mathrm{Q} \vee \mathrm{R}), \sim \mathrm{P}\}$.

1. Determine the negation of the goal: $\sim \mathrm{R}$
2. Create $S+=\{(P \vee Q),(\sim Q \vee R), \sim P, \sim R\}$.
3. Do the refutation ...
(a) ($\mathrm{P} \vee \mathrm{Q}$) element of $\mathrm{S}+$
(b) $(\sim \mathrm{Q} \vee \mathrm{R})$ element of $S+$
(c) $(\mathrm{P} \vee \mathrm{R})$ resolution of (a) and (b)
(d) $\sim \mathrm{P}$ element of $S+$
(e) R resolution (c) and (d)
(f) $\sim \mathrm{R}$ element of $S+$
(g) \square resolution of (e) and (f)

Exercise (logical consequence by refutation)

Draw the refutation tree corresponding to the linear refutation just presented.

