
Third Racket Programming Assignment Solution

Learning Abstract:

In the first task of this Racket assignment, I learned how to implement the ten functions of
historical lisp (quote, eval, car, cdr, cons, eq, atom, lambda, define and cond) in Racket to get a
better understanding of how these functions work. In the second task, I learned about some list
processing within Lisp by using some of the functions from the first task such as car, cdr, define,
etc., as well as some new functions such as append and list-ref. Finally, the third and fourth tasks
focused mainly on creating lists as well as finding random or specific elements in the lists all
while using functions mentioned above.

Task 1 - Historical Lisp

Parroting Racket interactions and definitions from “Lesson 7: Historical Lisp”.

> Quote and Eval

Interactions - Constants 9 and ‘‘red’’ and ’red

Interactions - Variants of the quote special form

Interactions - Illustrating the “unbound variable” error



Interactions - Examples of standard form evaluation

Interactions - Illustrating the “unbound function” error

> Car, Cdr and Cons

Interactions - Examples of the car function

Interactions - Examples of the cdr function

Interactions - Examples of the cons function



> Eq and Atom

Interactions - Examples of the eq? function

Interactions - Examples of the atom? function

> Lambda

Interactions - Interactions featuring lambda function application



> Define

Definitions - Defining four items, two variables and two functions

Interactions - Referencing the two variables and applying the two functions

Definitions - Redefining the two functions

Interactions - Illustrating the application of these functions



Definitions - Defining the area-of-circle function

Interactions - Testing the area-of-circle function

> Cond

Definitions - Defining the rgb, determine, and got-milk? functions

Interactions - Mimicking the demo illustrating application of the three functions



Task 2 - References and Constructors

Parroting Racket interactions and definitions from “Lesson 8: Basic List Processing” that pertain

expressly to referencers and constructors.

> Racket Session featuring CAR, CDR and CONS

Interactions - Applying CAR, CDR and CONS

> Referencing a list element

Interactions - Referencing a list element from scratch



Interactions - Referencing a list element from using list-ref

> Creating a list

Interactions - Creating a list from scratch

Interactions - Creating a list using list

> Appending one list to another list

Interactions - Appending two lists from scratch



Interactions - Appending two lists using append

> Redacted Racket Session Featuring Referencers and Constructors

Interactions - Mindfully doing the redacted session, for real



Task 3 - Random Selection

The simple little program presented selects an element at random from a given list. The list is

provided by means of the read function, which will read any S-expression, including a list.

Definitions - Defining the sampler program

Interactions - Mimicking the sampler program demo



Task 4 - Playing Card Programming Challenge

The code and demo for the playing card programming challenge presented at the end of Lesson 8

is presented here.

Definitions - Programming the card playing functionality



Interactions - Mimicking the card playing functionality demo


