
Sorting

When you rearrange data and put it into a certain order, you are sorting the data. You can sort
data alphabetically, numerically, and in other ways. Often you need to sort data before you use
searching algorithms to find a particular piece of data.

There are many different algorithms that can be used to sort data. A few popular ones are listed
below:

- Selection Sort

- Bubble Sort

- Merge Sort

- Quick Sort

- Insertion Sort

- Heap Sort

For CSE 214, we will be studying the first four.

Selection Sort

The name of Selection Sort comes from the idea of selecting the smallest element from those
elements not yet sorted. The smallest element is then swapped with the first unsorted element.

Here is the basic process of sorting an n-element array, A, using selection sort:

1. Find the smallest element from A[0]…A[n]

2. Swap that smallest element with A[0]

3. Find the smallest element from A[1]…A[n]

4. Swap that smallest element with A[1]

5. Find the smallest element from A[2]…A[n]

6. Swap that smallest element with A[2]

.

.

.

Continue this process until the last element in the array.

Selection Sort Example

Here we are sorting an array containing the following numbers:

 8, 27, 33, 2, 20, 12, 19, 5

In the following figure:

- The already sorted part is shown in italics

- The first unsorted element is shown underlined

- The minimum element of the unsorted part is shown in bold

CSE 214 – Chapter 3: Sorting 1

8, 27, 33, 2, 20, 12, 19, 5

2, 27, 33, 8, 20, 12, 19, 5

2, 5, 33, 8, 20, 12, 19, 27

2, 5, 8, 33, 20, 12, 19, 27

2, 5, 8, 12, 20, 33, 19, 27

2, 5, 8, 12, 19, 33, 20, 27

2, 5, 8, 12, 19, 20, 33, 27

2, 5, 8, 12, 19, 20, 27, 33

2, 5, 8, 12, 19, 20, 27, 33 Resulting sorted array

Implementing Selection Sort in Java

How can we write a Java method that will implement the selection sort algorithm which is
explained above?

Assume we have a recursive minIndex(int[] a, int left, int right) method which
returns the index of the minimum element of an array within the specified indices. Then we can
implement the selection sort algorithm in the following way:

public static int[] selectionSort(int[] a)

 {
 for(int i = 0; i < a.length; i++)

 {
int min_ind = minIndex(a, i, a.length);

 // swap a[i] with a[min_ind]
 int temp = a[i];

 a[i] = a[min_ind];
 a[min_ind] = temp;
 }

 return a;
 }

As an exercise, implement the recursive minIndex method. As another exercise, change the code
above so that you get rid of the recursive minIndex method, providing an iterative solution.

Bubble Sort

The idea of bubble sort is to compare two adjacent elements. If they are not in the right order,
switch them. Do this comparing and switching (if necessary) until the end of the array is reached.
Repeat this process from the beginning of the array n times.

Bubble Sort Example

Here we want to sort an array containing [8, 5, 1]. The following figure shows how we can sort
this array using bubble sort. The elements in consideration are shown in bold.

8, 5, 1 Switch 8 and 5

5, 8, 1 Switch 8 and 1

CSE 214 – Chapter 3: Sorting 2

5, 1, 8 Reached end start again.

5, 1, 8 Switch 5 and 1

1, 5, 8 No Switch for 5 and 8

1, 5, 8 Reached end start again.

1, 5, 8 No switch for 1, 5

1, 5, 8 No switch for 5, 8

1, 5, 8 Reached end. But do not start again since this is the nth iteration of same process

Implementing Bubble Sort in Java

public static int[] bubbleSort(int[] a)

{
for(int i = 0; i < a.length; i++)

 {
 for(int j = 0; j < a.length; j++)
 {

 if(a[j] > a[j+1])
 {

// then swap these two
int temp = a[j];
a[j] = a[j+1];
a[j+1] = temp;

 }
 }
 }
 return a;
}

Merge Sort

Merge sort is a divide and conquer sorting technique. Divide and conquer algorithms are
essentially more complicated recursive algorithms, so there is little new information here:

The divide phase repeatedly divides the problem into smaller sub-problems until the problem is
small enough to solve.

The conquer step solves the simpler sub-problems and reconstructs a solution to the overall
problem.

In merge sort we assume we know:

• how to sort an array containing the smallest possible number of values (ie, only one
value), and

• how to merge two sorted lists.

CSE 214 – Chapter 3: Sorting 3

The idea behind merge sort to divide the problem in half, recursively, until there is one item to
sort, and then merge the sorted items when returning from the recursion.

Merge Sort Example

Generation of Subproblems:

42, 7, 22, 2, 10 | 9, 15, 4, 33, 26

42, 7, 22 | 2, 10 9, 15, 4 | 33, 26

42, 7 | 22 2 | 10 9, 15 | 4 33 | 26

42 | 7 22 2 10 9 | 15 4 33 26

 42 7 9 15

Result of Merge Operations (the topmost result is the last one returned, i.e. start tracing from the
bottom of the pyramid):

 2, 4, 7, 9, 10, 15, 22, 26, 33, 42

2, 7, 10, 22, 42 4, 9, 15, 26, 33

7, 22, 47 2, 10 4, 9, 15 26, 33

7, 47 22 2 10 9, 15 4 33 26

 42 7 9 15

Implementing Merge Sort in Java

public static int[] mergeSort(int[] a, int left, int right)

{
if(left < right)

 {
 int mid = (left + right) / 2;

 // Sort the first half
 int[] left = mergeSort(a, left, mid);

 // Sort second half
 int[] right = mergeSort(a, mid+1, right);

 return merge(left, right);

 }

 int[] arr = new int[1];

CSE 214 – Chapter 3: Sorting 4

 arr[0] = a[left];
 return arr;
}

Then, how should merge method look like?

public static int[] merge (int[] a, int[] b)

{
 // create a new array which will be result of this merge operation
 int[] result = new int[a.length + b.length];

 int index = 0;
 int aIndex = 0;
 int bIndex = 0;

 while(aIndex < a.length && bIndex < b.length)
 {
 if(a[aIndex] <= b[bIndex])
 {
 // then, a[aIndex] is less then all elements in b
 // since b is already sorted

 result[index] = a[aIndex];

 index++;
 aIndex++;
 }
 else
 {
 // then, b[bIndex] is less then all elements in a
 // since a is also already sorted

 result[index] = b[bIndex];

 index++;
 bIndex++;
 }
 }

 if(aIndex < a.length)
 {
 while(aIndex < a.length)
 {
 result[index] = a[aIndex];
 aIndex++;
 index++;
 }
 }

 if(bIndex < b.length)
 {
 while(bIndex < b.length)
 {
 result[index] = b[bIndex];
 bIndex++;
 index++;
 }

CSE 214 – Chapter 3: Sorting 5

 }

 return result;
}

Quick Sort

Another efficient sorting algorithm is Quick Sort which, like Merge Sort, uses a divide-
and-conquer approach to sort the elements of an array. In order to sort the elements of an
array A in increasing order from position left through position right, Quick Sort performs
the following steps:

- Partition the array so that all elements in the range A[left]…A[p-1] are smaller
than A[p] and A[p] is smaller than any element in the range A[p+1]…A[right]

- Sort the first partition by recursively applying Quick Sort on the elements
A[left]…A[p-1]

- Sort the last partition by recursively applying Quick Sort on the elements
A[p+1]…A[right]

If you have a method that performs partition, then you would easily implement this
recursive method. As an exercise think about how can you implement the approach
explained above by assuming you have this partition method.

Partition

Partitioning is the most complex part of quick sort. The simplest thing is to use the first
value in the array, A[0], or in general A[left], as the pivot. After the partitioning, all
values to the left of the pivot are <= pivot and all values to the right are > pivot.

For example, consider

where the value of a[l], namely 8, is chosen as pivot. Then the partition function moves
along the array from the left until it finds a value > pivot. Next it moves from the right,
passing values > pivot and stops when it finds a value <= pivot. This is done by the
following piece of code:

i = l; j = r + 1;
do ++i;
while(a[i] <= pivot && i <= r);
do --j;
while(a[j] > pivot);

Then if the lhs value is to the left of the rhs value, they are swapped. Variable i keeps
track of the current position on moving from left to right and j does the same for moving
from right to left. You then get

CSE 214 – Chapter 3: Sorting 6

a[i] and a[j] are swapped to give

This process is repeated until i >= j. At the end,

When j passes i, the partitioning is finished. At this stage the partition code breaks out of
the main while loop. All a[k] <= pivot where k <= j. All that we do next is swap the pivot
with a[j] to get

Exercise: how can this partition method be implemented?

CSE 214 – Chapter 3: Sorting 7

